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PREFACE

The technical program of the 13th Annual Meeting of the Society of Engi-
neering Science, Inc., consisted of 159 invited and contributed papers covering
a wide variety of research topics, a plenary session, and the Annual Society of
Engineering Science Lecture. Thirty-three of the technical sessions contained
invited and/or contributed papers while two of the sessions were conducted as
panel discussions with audience participation.

These Proceedings, which contain the technical program of the meeting, are
presented in four volumes arranged by subject material. Papers in materials
science are contained in Volume I. Volume II contains the structures, dynamics,
applied mathematics, and computer science papers. Volume III contains papers
in the areas of acoustics, environmental modeling, and energy. Papers in the
area of flight sciences are contained in Volume IV. A complete Table of Contents
and an Author Index are included in each volume.

We would like to express particular appreciation to the members of the
Steering Committee and the Technical Organizing Committee for arranging an
excellent technical program. Our thanks are given to all faculty and staff
of the Joint Institute for Advancement of Flight Sciences (both NASA Langley
Research Center and The George Washington University) who contributed to the
organization of the Meeting. The assistance in preparation for the meeting
and this document of Sandra Jones, Virginia Lazenby, and Mary Torian is
gratefully acknowledged. Our gratitude to the Scientific and Technical
Information Prgrams Division of the NASA Langley Research Center for pub-
lishing these Proceedings is sincerely extended.

Hampton, Virginia 1976 J. E. Duberg

J. L. Whitesides
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Introductory Remarks For A Panel
Discussion Session

on

COMPUTERIZED STRUCTURAL ANALYSIS

AND DESIGN - FUTURE AND PROSPECTS

Lucien A. Schmit, Jr.
University of California, Los Angeles

The renowned numerical analyst, Dr. Richard W. Hamming, has written "The
Purpose of Computing Is Insight, Not Numbers". As we take a look at the past,
present, and future prospects for computerized structural analysis and design,
we would do well to keep this charge in mind.

Huge strides have been made in the development of reliable structural
analysis methods during the past thirty years. A vast array of powerful
structural analysis tools has emerged and found widespread acceptance in
engineering practice. The steady growth and availability of large scale
general purpose digital computers has facilitated the development of rather
general structural analysis capabilities, notably the various finite element
programs. Also, as confidence has grown in our ability to predict the behavior
of alternative designs, there has been a natural tendency to come to grips with
the problems of wider scope that make up the structural design process. As
one looks to the future and asks, what are the prospects, it appears that
many of the new developments envisioned are characterized by an innate desire
to strengthen creative control over the use of computers in structural
analysis and design.

The development of computer programs for structural analysis, particularly
finite-element methods, has been motivated by the need for economical and
reliable prediction of structural behavior. Over the past 15 years, workers
in the finite-element field have given attention to improving the theoretical
foundations and the numerical techniques used. However, even more emphasis
has been placed on increasing problem size, improving generality of configur-
ation and extending finite-element methods to deal with more complex structural
behavior. Mature computer programs for linear static and dynamic analysis of
a rather general class of structures are generally available and widely used
today. Programs capable of handling buckling analysis as well as nonlinear
static and dynamic response also exist, although they are somewhat less
mature. In his remarks, Professor Wilson observes that "new computer programs
with improved accuracy and efficiency will not necessarily be adopted by the
profession unless they solve problems that existing programs cannot." As we
look ahead, it is likely that the growing use of composite materials as well
as the need to treat crack growth and fatigue failure modes will provide
impetus for the development of new programs. Also, as Dr. Stanton suggests,
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it is anticipated that computational models characterizing real composite
materials will become a bridge that helps bring the technology of the materials
scientist to the structural engineer. While large pipeline and parallel pro-
cess computers have not yet had a significant impact on the solution of
structural analysis problems, they are expected to find important application
in large scale transient response problems, nonlinear analyses, and design
optimization studies.

The structural design problem is substantially more involved than the
analysis problem, even if attention is restricted to simple proportioning.
When configuration, material, and topological changes are considered, the
structural design problem becomes very complex and it is not well understood.
Dr. Berke traces the history of automated structural design beginning with the
early structural index work, followed by: the advent of the general nonlinear
programming formulation, the subsequent resurgence of the fully stressed
design method, and the emergence of the discretized optimality criteria
approach. As pointed out by Dr. Card, recent advances in the mathematical
programming approach to structural design have been based on approximation
concepts including design variable linking, deletion of redundant constraints,
and design oriented structural analysis methods. Nonlinear mathematical
programming methods cannot handle thousands of design variables and discretized
optimality criteria techniques have difficulty identifying the set of critical
constraints that will be active at the final optimum design. It is reasonable
to expect that hybrid methods, which synergistically combine nonlinear
mathematical programming methods with discretized optimality criteria techniques
and design oriented structural analysis will emerge in the near future. Looking
further ahead, it is likely that increased attention will be given to config-
uration, material, and topological design changes. Efforts will be made to
gain deeper understanding of the design problems formal structure. Also, as
Dr. Berke suggests, it may be possible to bring artificial intelligence to
bear on the structural design problem through the use of adaptive learning
network ideas.

As we look to the future, many of the developments projected by the panel
seem to reflect a deep innate desire to strengthen creative control over the
use of computers in structural analysis and design. The growth of easy
access computing via simple problem oriented languages used in an interactive
mode with graphic displays leads to greater involvement of the computer system
user. As Dr. Hartung points out, structural engineers will spend more of
their time as software synthesizers who select technical modules from program
libraries and they will phase out of the ad hoc programming activities that
have been so common during the last fifteen years. Software systems generated
by computer specialists, numerical analysts and a few engineers with special
training in modern programming techniques will have to be extremely well-
documented, so that structural engineers will be able to use them while
maintaining creative control. The pressing importance of solving the software
dissemination, standardization, and accreditation problem is emphasized by
Dr. Hartung and Dr. Card. Integrated procedures for interdisciplinary system
design tend to focus attention on the importance of automated data management.
It is interesting to note that many of the interdisciplinary system design
procedures reflect the current in series design process that is commonplace
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in industry today. Emphasizing data management, while minimizing change in
the basic design process and the associated organizational structure, tends to
preserve whatever creative control currently exists over the system design
process. Finally, it would seem that the future prospects for minicomputers
and microcomputers in structural analysis, touched on by Professor Wilson,
Dr. Hartung and Dr. Stanton, may also enhance the structural engineer's
opportunity to exercise more creative control over different analysis tasks,
such as nonlinear dynamic response and characterization of actual composite
materials. In closing, let me express my confidence that the barriers to
computerized structural design, so aptly set forth by Dr. Card, will in time
be overcome. As we move forward in the area of computerized structural
analysis and design it may be useful for us to ponder the cryptic words of the
poet T. S. Eliot, who in a very different context wrote, "Where is the wisdom
we have los4t in hnowledge? Where is the knowledge we have lost in information?"
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AUTOMATED STRUCTURAL DESIGN - FUTURE AND PROSPECTS

Laszlo Berke
Air Force Flight Dynamics Laboratory

Structural optimization has been an active area of research for many decades
and has aided generations of engineers to find rational solutions to structural
design problems of ever increasing complexity. There is now a noticeable
lessening of research activity in this field. If this trend persists, it will
unfavorably influence the future prospects of optimization. This will occur at
a time when needs for optimization capabilities will predicably increase in the
wake of ambitious developments in integrated procedures for automated aerospace
vehicle design.

It is usually constructive to recall past achievements prior to assessing
future prospects. New design challenges and new developments in computing
capabilities continually produce new trends which, however, tend to build on
past achievements. We can recall the precomputer era when the "in" thing was to
perform optimization of compression panels with every conceivable geometry.
Most of this work was based on the heuristic optimality criteria of simultaneous
failure modes. Redundant structures were analyzed at that time by various
approximation methods, and their members were manually sized to attain their
respective critical stress levels. Repetitive application of this procedure
was later formalized as the "fully stressed design method", FSD for short.
These two early optimality criteria methods served the designers well at that
time, and in most practical situations continue to do so, even today.

With the early appearance of computers, optimization methodology faced a
new challenge. Relying on the emerging computational capabilities, nonlinear
mathematical programming was introduced in the late fifties as the proper
general framework for all structural optimization problems. Research along
these lines became the new "in" thing during the exciting decade of the sixties.
Research money was relatively abundant and a proliferation of results followed.
One of the most important results was to rethink the basic nature of optimization
problems and of the methods which can successfully solve them. It was conclu-
sively shown that, in general, neither the simultaneous failure modes for
components, nor FSD for redundant structures, resulted in an optimum design.
As computing power increased and the powerful finite element methods became
the most popular analysis tool for redundant structures, an unfortunate but
basic shortcoming of nonlinear programming methods became apparent. The
increasing number of reanalyses required as a function of the number of design
variables rendered them impractical to finite element models that, by the mid-
sixties, routinely consisted of thousands of elements. The discredited FSD
had to be reinstated for strength optimization of large, redundant, finite
element systems, and new, "exact", discretized, optimality criteria methods
had to be introduced for stiffness constraints. After a slow start in the late
sixties, these stiffness-related, discretized, optimality criteria methods
provided a new turning point once again. Now they are widely accepted as the
latest "in" thing for such diverse constraints as displacements, static stability,
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dynamic response, and flutter. Even such exotic new requirements as aeroelastic
tailoring and various control characteristics of flexible, advanced-composite
aircraft are being considered.

One can briefly assess the current state of the art by saying that efficient
mathematical programming methods are available for design problems of virtually
any complexity. However, the number of design variables must be kept reasonable,
either by appropriate modeling or by the nature of the problem. For final
detailed design the problem is not entirely under control. Detailed structural
models use thousands of finite elements, each with more or less independent
size variables. Current practical capabilities for combined strength and
stiffness design are theoretically improper heuristic mixtures of the "incorrect"
FSD and the "correct", stiffness-related, optimality-criteria approaches. The
recent advocacy of advanced composites tends to further aggravate the situation.
While immediate needs for optimization are filled by the design teams with
various pragmatic approaches of more or less parochial character, generally
acceptable solutions are lacking for many important problems.

The future holds many new additional challenges. Optimization techniques
in general, and nonlinear programming in particular, will continue to benefit
from increasing computing capabilities which will help them to permeate the
design process deeper and deeper. The emergence of integrated and automated
vehicle design technology, based on ambitiously defined executive data manage-
ment systems, will underscore the need for further automation. This automation
must relate to both the analysis and the redesign process while relying on
efficient optimization techniques.

Integrated analysis and design capabilities, when fully developed, could
result in such voluminous information that it would tax the perceptive
capabilities of human designers despite great versatility of information display.
A higher form of optimization, enhanced with learning capabilities, could be a
useful tool to digest the large amounts of analysis information and "suggest"
design changes. Within the broad area of artificial intelligence research,
considerable practical software and hardware capabilities have been developed
in the particular field of adaptive learning networks. Once such a network is
"trained" to approximate the behavior of a real system, it can be interrogated
in a fraction of the computer time necessary to query the real system. As an
experienced engineer acquires a "feel" for a particular problem as it progresses,
learning networks are conceived essentially to do the same. Incorporation of
such machine intelligence in future automated structural design will enable the
engineer of tomorrow to more adequately use his unique human ability - creativity.
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OVERCOMING THE BARRIERS TO

COMPUTERIZED STRUCTURAL DESIGN

Michael F. Card
Langley Research Center

INTRODUCTION

From a research point of view, the prospects for computerized structural
analysis and design appear to be excellent. Computerized analysis is now an
integral part of all major structural engineering projects. There is consider-
able ongoing research on advanced design techniques, in both government and
industry; recently NASA has taken a significant step towards enhancing the use
of computers in design with initiation of the IPAD project (Refs 1 and 2).
However, the development of a major thrust to advance the design state of the
art by automation has been slow. For example, it has taken about six years for
a satisfactory arrangement to be negotiated between government and industry for
IPAD. Thus, it would appear that there are some significant barriers to accep-
tance of computerized design as a national goal.

BARRIERS

Some of the major barriers which I perceive are

" THE ALL KNOWING DESIGNER SYNDROME

" THE COOKBOOK ENGINEER

" MAN'S FASCINATION WITH MACHINES

" COSTS

" STANOARDIZATION/ACCREDITATION

A facetious illustration of the first barrier is shown in figure 1. One of
the ghosts of the past has been the perception that most of the really serious
design work is done by a clever, experienced designer, a unique individual who
through sheer physical insight is able to master all problems. Unfortunately,
as structural designs have become more and more complex, the single designer
with complete mastery of his structure is a vanishing breed. The size and
complexity of major structural projectsdo not permit any such seat-of-the- -
pants designer to make a significant contribution, except in the very earliest
stage of design. Even in the embryonic stages of design, with only his-insight,
he is hard pressed to make a convincing technical case for the credibility of
his ideas.
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A second barrier to the acceptance of computerized design is at an opposite
pole from the practical designer. The computer cookbook engineer (see figure
2) can be viewed as a serious threat to any engineering or research organiza-
tion. The reliance on the computer to do design is a terrible temptation to
transfer engineering responsibility and understanding to a machine. Methods to
discourage misapplication and lack of proper solution checking are a constant
concern of most organizations who perform computerized design activities. To
reduce development costs, there are tremendous pressures to rely on computer-
ized analysis and design ,and to eliminate qualification testing. But, how do we
ensure that computations are accurate and appropriate?

A third barrier is man's fascination with machines. As illustrated in
figure 3, the exposure of engineers with good structural insight to the compu-
ter can be dangerous. The process of transition of the structures engineer to
computer software specialist is suggested. While computer science may benefit
by cross-fertilization, there must remain a hardcore group of structural
specialists who are able to interpret and apply the results of computerized
designs and who may conceivably invent new techniques.

A fourth barrier (common to all current advanced technologies) is the
unknowns associated with costs. As illustrated in figure 4, the resources to
perform structural design in the aircraft industry have been steadily increas-
ing. The hope of automated design is that the computer will reduce manhours
expended in design and that computer hour costs will not increase enough to
offset the manhour cost reduction. If the computer design process is too com-
plex, however, a net cost reduction will not be realized, even though the depth
and accuracy in which real-time design cycles can be executed will be signifi-
cantly increased.

The cost barrier is complicated by government experiences with computer-
ized analysis development. Recent NASA experience with NASTRAN and FLEXSTAB
suggests that the government must modify its future role in the support of
major computer code developments. As illustrated in figure 5, the pattern for
development costs will include government support of initial development costs
including software design, coding, early debugging, testing and maintenance;
however, after the code is sufficiently matured, it will be up to a community
of users to continue its financial support. Lack of commitments by user
groups to assume this financial burden will necessarily slow the pace
of advanced computerized capability.

The final barrier is the issue of standardization and accreditation. As a
member of the government, I recognize the need for both elements, but I am
somewhat sceptical of the process (e.g. fig. 6) by which it can be accomplished.
Once it is admitted that such a process is needed, a tremendous power struggle
for the right to control the process is created. The protagonists come from
industry, university and government. They range from the industrialists who
are fighting to retain competitive edges in computer hardware and software
systems to the technical societies and government agencies who are struggling
to be recognized as the all-powerful certifying agent. The addition of stand-
ardization and certification requirements will of necessity retard the
development pace of automated design tools.
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PROSPECTS

I believe that the barriers to general acceptance of automated structural
designs can be overcome. As illustrated in figure 7, significant progress is
being made in aerospace applications of computerized sizing with very accurate
analysis becoming both feasible and cost effective.

The keys to overcoming the barriers already mentioned are as follows:

FUTURE ATTRACTIONS

"* DESIGNERS ON SCOPES RATHER THAN BOARDS

"* BRAINWORK RATHER THAN DOGWORK

PREREQUISITES

"* DESIGN PROBLEMS OF SUFFICIENT COMPLEXITY

"* NEED FOR REDESIGN SPEED

CENTRAL STEPS

"* COMPUTERIZED DESIGN TRAINING IN UNIVERSITIES AND INDUSTRY

"• SERIES OF STRUCTURAL TESTS TO DEMONSTRATE EFFECTIVENESS
OF AUTOMATED DESIGN

"* MOBILITY IN TECHNOLOGY TRANSFER THROUGH STANDARDIZATION

To attract young people to the structural design profession, it seems
likely that man's fascination with machines can be exploited to eliminate the
drafting board. For the existence of such an advanced design capability, how-
ever, there are two prerequisites. Foremost is the challenge to design a struct-
ure or vehicle of sufficient complexity to warrant such techniques. As an
example, development of advanced supersonic cruise aircraft designs have offered
a greater stimulus to computerized design development than subsonic transport
designs because of greater technical complexities (especially in aeroelastic
design) and more demanding payload requirements. A second prerequisite is the
urgency for speed in the design cycle. Generally design cycle speed require-
ments are generated by competition, mission and market targets, and design time
costs; however, in economically depressed industries, the tendency is to
stretch out vehicle development times.

Finally, I suggest three central steps which might be taken to overcome
resistance to computerized structural design. First, to eliminate the cook-
book engineer, a serious attempt should be made to properly train engineers in
the use of the computer for design. This is particularly important in uni-
versity training where the ethics of using the computer can be taught. Second,
to address the fear of fallibility of computer-generated designs, there should
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be a series of design and structural test activities whose purpose is to vali-
date the credibility of computer-generated designs. Finally, the cost-
effectiveness of computerized design systems can be achieved with selective use
of standardization to permit some technology transfer of structural design
techniques to a wider range of industries.
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Figure 1.- The all-knowing designer syndrome.
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COMPUTERIZED STRUCTURAL ANALYSIS AND DESIGN -- FUTURE AND PROSPECTS

Richard F. Hartung

Lockheed Research Laboratory

OPENING REMARKS

The analysis and design of structures by computer methods will be influ-
enced in the future by new developments in computer hardware and software and by
the development of new analysis capability. These developments will tend to
relieve the engineer of much of the programming activity in which he now en-
gages and will provide him with a very powerful array of analysis tools that
allow him to solve a greater variety of problems. Much of the routine data
handling activity that now occupies the engineer's time will be taken care of
by data managers or eliminated by compatible interdisciplinary engineering

analysis software. In short, engineers will be able to spend more time doing
engineering work.

Software technology is changing rapidly. Ad hoc programming techniques
that have been used in the development of much of the present-generation, struc-
tural-analysis software are no longer satisfactory for this purpose. More for-
mal coding procedures and new programming languages will be used to facilitate
program development, checkout, application,and maintenance. Future software

will be systems oriented with extensive libraries of technical modules, matrix
utilities, and driver programs that communicate via a common data base or a
super executive program. Data base management techniques specifically oriented
to the large files of numerical data arising in scientific analysis will be in
common use. More attention will be given to program documentation and configu-
ration control to insure that software will be perpetuated as personnel changes
occur.

Most structural engineers will have neither the inclination nor the necessary
training to plan and program good software systems. These tasks will be done
by computer specialists, numerical analysts, and engineers with extensive train-
ing and experience in the use of modern programming techniques. The structural
engineer will no longer have to be a software developer; instead he will be a
software synthesizer who selects modules from program libraries and executes
them as required to solve the problem at hand. Although he may know very little
about computer programming, he will have available to him a very powerful com-
puter capability that he can operate with a simple problem-oriented language.
Furthermore, as various engineering organizations begin to share the same analy-

sis system there will be much more interaction between various engineering
organizations (e.g., structures, thermo, aero, loads, etc.) during the design

process.
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The problem of software dissemination has not yet been satisfactorily re-
solved. While millions of dollars in public funds have been spent in recent
years on software development, relatively little of it is readily available to
the public. Several questions need to be answered. (1) How can a structural
engineer with a problem determine what computer programs are available to solve
his problem? (2) How can the appropriate program be obtained or used? (3) Who
will provide technical assistance on the use of the program? (4) How will the
costs of the dissemination and consultation be handled? New approaches to this
problem will be explored in the future. Some of the current structural analysis
programs are available from computer utility companies on a surcharge basis. An
increasing number of industries, that previously relied on crude approximate
techniques or simply ignored structural analysis altogether, are beginning to
use these structural analysis programs on a routine basis. For example, one
manufacturer of office reproducing machines has begun to use computer programs
to perform dynamic analysis of its machines in order to reduce vibrations and
thus improve the sharpness of the reproductions produced by the machine. In the
future, regulatory agencies may require that structures in which public safety
is involved be designed and analyzed using computer programs that have been cer-
tified. This could have a significant affect on design procedures.

Minicomputers and microcomputers will continue to become more powerful and
less expensive. These machines will assume the role of interactively handling
many pre-and post-processing functions that are now done in a batch mode on the
macrocomputers. One interesting possibility is that special purpose minicompu-
ters will be developed to execute specific structural analysis programs. Under
this scheme, one could obtain a turn-key structural analysis capability includ-
ing software, hardware, and documentation.

More powerful macrocomputers presently under development will make avail-
able to the analyst the low cost, high capacity, high speed computer needed to
conduct transient-response and nonlinear analyses or to perform design and optimi-
zation studies. Such problems require that the governing equations be solved a
large number of times in order to obtain a solution. Currently, the cost of
these analyses are prohibitive when applied to large structural models needed
to represent real structures.

As the analyst's capability to solve complex problems (e.g., those involv-
ing nonlinear phenomena, transient response, or buckling) is increased, so will
be the amount of judgment that he is required to exercise. Selection of the
various solution parameters, solution strategy, and discretized structural model
requires extensive experience. To guide the analyst in this kind of problem,
preprocessors could be developed which, when given data that describes the
structure and type of analysis to be performed, would provide the analyst with
information to guide him in making a mathematical model and selecting an appro-
priate solution strategy. The preprocessor could even automatically set many
of the solution parameters in the computer program in much the same way that an
automatic camera selects exposure parameters based on light meter readings. The
experienced user could override these settings, of course, if he felt it appropri-
ate. Such capability would enable the analyst to conduct a more accurate analy-
sis in less time and with lower cost.
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To be prepared to function effectively in the environment of the future,
engineering students will have to be given a balanced curricula that provides
both a good background in fundamentals of mechanics and familiarity with con-

cepts such as discrete representation of structures, matrix algebra, and numeri-
cal analysis that are fundamental to computer analysis of structures.

In summary, the structural analyst will surrender some autonomy in the
area of software development and utilization. More formal programming and data
format procedures will be required. However, the analyst will have available

to him powerful, system-oriented, engineering analysis programs that will enable
him to solve complex interdisciplinary problems and relieve him of much of the
routine noncreative work with which he must now contend.
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COMPUTER SIMULATION OF COMPOSITE MATERIALS
FOR STRUCTURAL DESIGN

Edward L. Stanton

Prototype Development Associates, Inc.

As almost anyone involved in structural design today will tell you, the use of

composite materials for primary structure tends to make structural response more
difficult to predict. The reasons for this increased difficulty range from problems in
material characterization to problems in predicting the complex load interactions that

can occur among constituents during failure. This is not to say that simple effective
modulus methods should not be used when appropriate, obviously they should. How-
ever, even in this situation it may require more than the rule of mixtures to determine
the effective moduli for a representative volume element of the material.

The point of this preamble is to indicate yet another role that the computer is
assuming in structural design; namely, a bridge that helps bring the technology of the
materials scientist to the structural engineer. This is an area of considerable activity

at all levels, and it seems clear that the role of the computer will grow as computational
models are developed that better characterize real composite materials. The models
now available are typically used in a preprocessor mode to characterize statistically

homogeneous stress-strain behavior, and in a postprocessor mode to predict margins
of safety or survival probabilities. Also, computer data files are becoming the
archive source for materials test data as it is developed for many new composites thus
replacing the traditional handbook.

The mode in which the computer is used to fill the roles just described will
more than likely change with the new minicomputers and other hardware developments.
Computational models in the future may use specially designed macroprocessors for
digital simulation of constituents. There are several factors that make computer simu-
lations of this type attractive: one, the rapid advances in electronic chip technology
make it economically feasible, and two, the triaxial as well as statistical nature of the
materials behavior make an all software simulation expensive. To illustrate this point,
it currently requires almost as much computer time to calculate survival probabilities
for some 3D materials given the state of stress and strain as it does to compute the
effective modulus stress-strain solution for the structure. While this may appear
excessive, it reflects the computational difficulty that can occur when material behavior
is characterized by a complex microstructure.
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THE FUTURE OF COMPUTERIZED STRUCTURE ANALYSIS

Edward L. Wilson
University of California, Berkeley

OPENING REMARKS

The solution of problems in the field of computational mechanics has pro-
gressed to the point in time where general purpose computer programs are used
for the majority of problems. As a result of the large investment in develop-
ment effort and the familiarization of many users with a particular code, new
computer programs for the solution of linear structural mechanics problems have
not emerged in the past few years. However, it is reasonable to state that a
large portion of every major computer program is obsolete and should be modi-
fied if optimum accuracy or efficiency is to be realized. Of course there are
several reasons why these general purpose codes are not being modified or
significantly extended. First, some codes are operated on a royalty basis;
therefore there is little motivation to increase their efficiency. Second,
many codes are so large and have been developed over such a long period of time
that it is practically impossible to make basic changes. Third, the basic
architecture of the code will not permit a change in the basic numerical ap-
proach to a problem. It is my observation that major new numerical techniques
will only be used in general purpose programs if a completely new program is
developed. It is also my opinion that new programs will not necessarily be
adopted immediately by the profession unless they solve problems that existing
programs cannot solve. This is because the user, in general, will not risk
change to a new, unfamiliar program for the sake of accuracy and efficiency
only.

While new capability is presently the only reason for the use of a new
computer program, within the next few years the development of new, inexpensive
computer hardware may be a compelling reason to change computer programs. The
development of parallel and pipeline large expensive computers has not had a
significant impact on the solution of problems in computational mechanics.
However, minicomputers (less than $50,000 with input, output and low speed
storage) are currently being used very effectively for the solution of medium-
size problems. In my opinion, the most significant change is yet to come.
Within the past year several different types of micro-computers (only 8 to 16
bits) have been developed. The present prices of these small programmable
computers, complete with local storage and input-output interfaces, range from
$200 to $500. If a system of these micro-computers is specifically designed
for the solution of finite element systems, it may be possible to solve large
dynamic nonlinear systems at a minimum of cost. In light of the new computer
hardware developments the purpose of my present research is to re-examine sev-
eral traditional numerical methods and to introduce some new numerical approaches
for both linear and nonlinear analysis.
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ON THE STABILITY OF A CLASS OF IMPLICIT ALGORITHMS

FOR NONLINEAR STRUCTURAL DYNAMICS

Ted Belytschko
University of Illinois at Chicago

SUMMARY

Stability in energy for the Newmark s-family of time integra-
tion operators for nonlinear material problems is examined. It
is shown that the necessary and sufficient conditions for uncondi-
tional stability are equivalent to those predicted by Fourier
methods for linear problems.

INTRODUCTION

In this paper, stability in energy for the Newmark family
(ref. 1) of time integration operators is examined. Stability for
these operators was considered in the original paper of Newmark,
who used essentially Fourier techniques which are strictly appli-
cable only to linear problems. Belytschko and Schoeberle (ref. 2)
have shown the unconditional stability of the particular form of
the Newmark j-operator that corresponds to the trapezoidal rule
(y=½, ý=¼) for nonlinear material problems by energy methods.
Hughes (ref. 3) extended this proof to the range of parameters
(y=½, BŽ¼). In this paper, it is shown by generalizing the defini-
tion of discrete energy, sufficient conditions for unconditional
stability in energy on both y and ý can be obtained. These condi-
tions are equivalent to the necessary conditions for the uncondi-
tional stability of the Newmark operators in linear problems, so
the conditions obtained herein are necessary and sufficient for the
unconditional stability for nonlinear material problems.

PRELIMINARY EQUATIONS

The equations will here be presented in the formalism of the
finite element method. As indicated in Belytschko, et al (ref. 4),
the spatial discretization in finite difference methods is ba-
sically identical, so the choice of finite element notation is
only a matter of convenience, not a restriction on the proof. The
equations will only be outlined; details may be found in Zienkiew-
icz (ref. 5).

The fundamental step in any spatial discretization, which is
often called the semidiscretizationis a separation of variables
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in the form

u(x,t) = f(x) d(e) (t) (1)

where x is the Cartesian coordinate, t the time, u the displace-
ment field, C the shape functions, and d(e)the nodal displacement
of element e. The strains can then be related to the nodal dis-
placements by

S= B d (e) = B L (e) d (2)

where B consists of derivatives of the shape functions and L (e) is
the connectivity matrix. The discrete equations of motion are
then

M a + f = p (3)

where M is the mass matrix, a the nodal accelerations (second de-
rivatives of d with respect to time), p the external nodal forces
and f the internal nodal forces, which are given by

= X L(e)Tf(e) = e Le)T / BT• dv (4)

e e v(e)

Equations (3) and (4) can be derived from the principle of virtual
work with the inertial forces included in a d'Alembert sense; see
for example Belytschko, et al (ref. 6).

We define a discrete internal energy by

= ~~e AT l) +dV (5)

U+1 :E 0 ý

e V(e) I I1

where upper case subscripts denote the time step and A denotes a
forward difference

A-I -= i+1 - 6i (6a)

and

0 1 (6b)
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When j=½, eq. (5) represents a trapezoidal integration of the non-
linear stress strain curve, while p=0 corresponds to Euler integra-
tion.

By means of eqs. (2) and (4), eq. (5) can also be written as

U U + ½ Ad T[(l--p)If + If (7)I+1 I I I -+1]

We require that the discrete internal energy be positive definite,
so that

SA4L[(l-1I)2j + 0g+ (8)

J=l

The kinetic energy T is given by

TI =I½_vITM v (9)

where v are the nodal velocities (first derivative of d with res-
pect to time).

The Newmark difference formulas are

S= v I + At [(l-y)a + yai+l1 (10)

d =d I + At vI + At 2 [(½ý-)aI + ýa 1+] (11)

When ý > 0, these equations are implicit, and hence for nonlinear
materials, the solution of a nonlinear system of equation is
necessary. The exact solution of the nonlinear system of equations
at each time step is not possible; at each time step there will be
an error ferr given by

ferr P - f - (12)

-I

We define an energy error criterion

IA l-) err + Pfierr1  < s (U + T (13)

where c is a small constant and require that the solution of the
nonlinear equations at each time step satisfy this criterion.
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PROOF OF UNCONDITIONAL STABILITY

We will now show that the error criterion, eq. (13), is a
sufficient condition for the unconditional stability in energy of
the Newmark integration formulas for yŽ: ½, ý2Žy/2. Stability in
energy is described in Richtmyer and Morton (ref. 7) and has pre-
viously been used for the derivation of stability conditions for
the solution of linear problems by the Newmark s-method by Fujii
(ref. 8).

The demonstration of unconditional stability in energy requires
that it be shown that a positive definite norm of the solution is
bounded regardless of the size of the time step. As pointed out
in reference 7, the norm need not be the physical energy, though
in many cases it is. For the purposes of this proof, we define
the norm by

SI = TI + UI + ( 2 ý-y)aITM a-1I(14)

Because of the requirement of eq. (8), UI is positive definite,
whereas the positive definiteness of the mass matrix M assures the
positiveness definiteness of the remaining two quantities if

2 • y (15)

Stability in energy is then assured if we can show that SI is
always bounded, i.e. that

SI+1 -< (l+6*)SI (16)

where £* is an arbitrarily small quantity. The interpretation of
the condition of eqs. (14) and (16) is as follows. Provided that
the discrete internal energy is a monotonically increasing func-
tion of the displacements, the boundedness of SI implies that the
velocities and displacements are bounded, which corresponds to the
notion of stability.

The proof of stability then consists of deducing eq. (16) from eqs.
(7) to (11) and the homogeneous form of eq. (3). Fromeqs. (9) and (10),
it follows that

TI+1 = TI + At v ITM [(l-y)aI + yai+l±

SAt2  (7
+ At 2 [(l-y)a ji + aT I _M [(1-y) (17)

2 -1I1 - (l-lI + Yai+1l
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so

TI = T + [d, + At (r3-½y)aT +2 At'Y-Py)aI 1~ 1J

(18)
M[(l-Y)ai + a+il] (8

Thus if we let

y = PJ (19)

then eqs. (7) and (18) yield

T + U =T + U + AdT[( _y) (MaI afi)
I+1 (Ma + f 1

+ y(Ma +f )1 + At 2 (!-X)aIT+( - )aITl]M

[(l-Y)a-I + yaI+l1 (20)

The second term on the right hand side of eq. (20) corresponds to
the error in energy as defined by eq. (13), and the last term can
be rearranged so that we obtain

T <T

T<(I+)(TI+UI) +At(y-2ý)(aiTiMa,+, - a, Ma)TI+1 + UI+1 I- ~

+At (y-½) (y-2f) (aT - ) M (a,+, - a,) (21)
-1+1 -i - -+1-

The last term on the right hand side of eq. (21) is negative semi-
definite if

y > ½ and 2ý -> y (22)

or if both of the above inequalities are reversed. However, if the
inequalities are reversed, as can be seen from eqs. (14) and (15),
the norm S, is not positive definite. Hence, only the conditions
given by eq. (22) are pertinent. Under these conditions, the in-
equality of eq. (21) applies even if the last term is dropped. The
remaining terms then yield eq. (16).
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DISCUSSION AND CONCLUSIONS

Several remarks should be noted in applying these results to
computations. First, the stability hinges on the achievement of a
solution in each time step that satisfies eq. (13). The conver-
gence of solution schemes, such as the modified Newton Raphson
method, cannot be assured, and is therefore the primary obstacle
in obtaining stable solutions. The difficulties are particularly
severe in elastic-plastic problems if the tangential stiffness
method is used whenever unloading takes place over a large part of
the mesh.

It is also not clear whether the form of the error criterion,
eq. (13), is suitable for very fine meshes. Numerical experiments
indicate that it becomes increasingly difficult to satisy eq. (13)
for finer meshes, for although the criterion appears to be mesh-
independent in that the right hand side increases with the size of
the physical problem, the right hand side does not vary as a mesh
is refined. Furthermore, in very large meshes there is a possi-
bility of cancellation of errors, i.e. positive error energy
transfer in one portion, with negative error energy transfer in
another portion. This can be avoided by placing the absolute
value within the summation.

Results have been reported for a special case of this operator
(y=½, 3=¼) in reference 2. Both material and geometric nonlinear-

ities were included in those problems. However, the proofs given
here and in reference 2 require the absence of geometric nonlin-
earities; if geometric nonlinearities are included, eq. (5) does
not imply eq. (7), for in geometrically nonlinear problems AB does
not vanish. Hence, as shown in reference 9, in geometrically non-
linear problems, energy transfer is associated with the rotation
of a stressed member: this effect results in the generation of
energy if the stress is tensile and is hence destabilizing under
those conditions. In many structural dynamics problems, the total
rigid body rotation that takes place is insufficient for this
energy generation to be significant. However, test problems have
been devised where the energy error is so large that for practical
purposes the computation can be considered unstable.

Finally, we comment on some experience with the requirement
of eq. (8). This condition requires that the numerical integra-
tion of the internal work always yield a positive quantity. In
elastic-plastic materials and other strongly dissipative materials,
this condition poses no problems. However, when the stress is a
single-valued function of the strain, eq. (8) can easily be
violated in cyclic load paths. However, numerical experiments do
not indicate that violation of eq. (8) results in any catastrophic
failure of the computation.
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A REVIEW OF SUBSTRUCTURE COUPLING METHODS FOR DYNAMIC ANALYSIS

Roy R. Craig, Jr. and Ching-Jone Chang
The University of Texas at Austin

SUMMARY

This paper assesses the state of the art in substructure coupling for
dynamic analysis. A general formulation, which permits all previously de-
scribed methods to be characterized by a few constituent matrices, is developed.
Limited results comparing the accuracy of various methods are presented.

INTRODUCTION

Analysis of the response of a complex structure to dynamic excitation is
usually accomplished by analyzing a finite element model of the structure.
Since the finite element model may contain thousands of degrees of freedom, and
since the structure may consist of several substructures which are designed and
fabricated by different organizations, it is desirable to have a method of
dynamic analysis which permits the number of degrees of freedom of the dynamic
model to be reduced and which also allows as much independence as possible in
the design and analysis of substructures-. The names substructure coupling and
component mode synthesis have been applied to the process of partitioning a
structure into substructures, or components, and describing the physical dis-
placements of the substructures in terms of generalized coordinates which are
the amplitudes of predetermined substructure modes. A number of substructure
coupling methods have been proposed. The goal of most of these has been to
permit analytical determination of system natural modes and frequencies from
given finite element models of the structure. To a lesser extent, the use of
experimentally-determined substructure data to synthesize mathematical models
of structures has been considered.

One classification of substructure coupling methods is based on the condi-
tions imposed at the interface between one substructure and the adjoining sub-
structures when mode shapes are determined for the substructure. One class is
called fixed-interface methods, and a second is called free-interface methods.
Related to the latter is a class which may be called loaded-interface methods.
Finally, some consideration has been given to permitting arbitrary interface
conditions which may be a combination of the above three types. Such a method
may be called a hybrid method.

The following classes of modes are used in defining substructure general-
ized coordinates: normal modes, constraint modes, attachment modes, and.rigid-
body modes. These are defined in greater detail in a later section of the
paper.

*This work was supported by NASA Grant NSG 1268.
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SYMBOLS

The principal defining equations are given in parenthesis after the
definition of each symbol.

A interface equilibrium matrix (29)
B displacement compatibility matrix (29)
C combination of A and B (33)
f substructure force vector (1)
F equivalent force vector (15)
G flexibility matrix (19)
k substructure stiffness matrix (1)
K system stiffness matrix (30, 37, 45)
L Lagrangian (26)
m substructure mass matrix (1)
M system mass matrix (30, 37, 45)
p substructure generalized coordinate vector (22, 25)
q system generalized coordinate vector (31)
R inertia relief matrix (14)
T substructure kinetic energy (21)
T1  substructure transformation matrix (22)
T2 system transformation matrix (31, 36)
U substructure potential energy (21)
x substructure physical coordinate vector (1)
n Lagrange multiplier vector (26)
0 free-interface or loaded-interface normal mode matrix (7)
K substructure generalized stiffness matrix (24, 25)
A,A substructure eigenvalue, eigenvalue matrix (2, 3)
P substructure generalized mass matrix (24, 25)
V Lagrange multiplier vector (26)
E generalized coordinate (27)
y Lagrange multiplier vector (38)
ý fixed-interface normal mode matrix (4)
X modified attachment mode matrix (20)
X unmodified attachment mode matrix (13, 17)
T constraint mode matrix (11)

Subscripts and Superscripts:

d dependent coordinates (32)
i non-interface (interior) coordinates (1)
j interface (junction) coordinates (1)
k kept coordinates (18)
k linearly-independent coordinates (32)
r rigid-body modes, temporary constraints (14, 15)
u unrestrained coordinates (15)
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HISTORICAL REVIEW

The following is a brief review of the development of a number of sub-
structure coupling methods:

Hurty (refs. 1,2) developed the first substructure coupling method capable
of analyzing substructures with redundant interface connection. Fixed inter-
face normal modes, rigid-body modes and redundant constraint modes are used
to define substructure generalized coordinates.

Bamford (ref. 3) introduced attachment modes, and developed a hybrid
substructure coupling method.

Craig and Bampton (ref. 4) and Bajan and Feng (refs. 5,6) modified Hurty's
method by pointing out that it is unnecessary to separate the set of constraint
modes into rigid-body modes and redundant constraint modes.

Goldman (ref. 7) and Hou (ref. 8) developed methods which employ free-
interface substructure normal modes. They differ in the technique used to
effect coupling of the substructures, as will be explained in a subsequent
section.

Benfield and Hruda (ref. 9) introduced two new concepts: they employed
Guyan reduction (ref. 10) to determine interface loading, and they used a
coupling strategy which differs slightly from strategies used by previous
authors. These features serve as the basis for four methods described by Ben-
field and Hruda: free-free, constrained, free-free with interface loading, and
constrained with interface loading.

MacNeal (ref. 11) developed a hybrid method which allows some substructure
interface coordinates to be constrained while others are free. He also sug-
gested the use of statically derived modes to improve the representation of
the substructure motion.

Goldenberg and Shapiro (ref. 12) employed a method similar to Hou's, but
provided for arbitrary mass loading of interface points.

Rubin (ref. 13) extended MacNeal's method to include second-order residual
effects of modes truncated from the final, set free-interface substructure
normal modes.

Kuhar and Stahle (ref. 14)-introduced a dynamic transformation which
approximates the effect of modes which are truncated from the final set of
system generalized coordinates.

In a recent paper Hintz (ref. 15) describes two statically complete inter-
face mode sets which he calls "the method of attachment modes" and "the method
of constraint modes." The former set is combined with both free-interface
normal modes and with fixed-interface normal modes to form system coordinates.
The latter is combined only with fixed-interface normal modes.

In reference 16 Craig and Chang describe three methods for reducing the
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number of interface coordinates in the final system equations obtained by the
Hurty method or the Craig-Bampton method. In reference 17 Craig and Chang
provide examples of substructure coupling based on the methods of MacNeal and
Rubin.

The previous references are primarily concerned with the use of substruc-
ture coupling methods in the analytical determination of modes and frequencies
of complex structures. Several studies, however, explore the use of experimen-
tal data as input to coupling procedures. The following studies are of this
nature:

Klosterman's thesis (ref. 18) provides a comprehensive study of the exper-
imental determination of modal representations of structures including the use
of these models in substructure coupling. In reference 19 Klosterman treats
substructure coupling by two methods which he calls "component mode synthesis"
and "general impedance method" respectively. The former closely parallels
Bamford's work. In reference 20 Klosterman and McClelland introduce "inertia
restraint" and outline a coupling procedure that appears to be especially
suited to coupling two substructures where one is represented by modes and the
second by a finite-element model.

Kana and Huzar (refs. 21,22) developed a semi-empirical energy approach
for predicting the damping of a structure in terms of damping of substructures.

Hasselman (ref. 23) employs a perturbation technique to describe substruc-
ture damping and discusses, in a general way, coupling of substructures using
either free-interface modes or fixed-interface modes.

Two symposia on the topic of substructure coupling have been held (refs.
24,25). Survey papers of particular importance, which were presented at these
symposia, are references 26 and 27.

A GENERAL FORMULATION OF SUBSTRUCTURE COUPLING FOR DYNAMIC ANALYSIS

The substructure coupling methods mentioned in the preceding section may
be described by a single comprehensive formulation. Differences in the methods
result from the use of different mode sets to describe substructure generalized
coordinates and different methods of enforcing compatibility of substructure
interfaces. We will first define the mode sets used in representing the sub-
structure physical displacements in terms of substructure generalized coordi-
nates. Then, using the Lagrange multiplier method, we will show how enforce-
ment of compatibility at substructure interfaces leads to system equations of
motion. Finally, the vectors and matrices which define the various methods
are tabulated.

Definition of Mode Sets

The physical displacements of each substructure are represented in terms
of substructure generalized coordinates through the use of various "assumed
modes," including normal modes of the substructure and certain static deflec-
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tion modes.

The equation of motion of a substructure, when connected to other sub-
structures and executing undamped free vibration, may be written in the form

m + i k = 
..

( 1)

jmii mjji xj k ji k jj LxjJ fji

Fixed-Interface Normal Modes

Fixed-interface normal modes are obtained by setting xj E 0 and solving

for the free-vibration modes of the substructure. Equation (1) reduces to the
eigenvalue problem

(kii - A2mii) xi = 0 (2)

The resulting substructure eigenvalues (frequencies) form a diagonal matrix

A = diag (ý2 X2 ... XN (3)

and the corresponding normalized eigenvectors (mode shapes) form the modal
matrix

Sil i2 (4)
00 . .. i0 ] 4

where Ni is the total number of substructure interior coordinates.

Free-Interface Normal Modes; Loaded-Interface Normal Modes

Free-interface normal modes are obtained by setting f. 0 in equation (1)

and solving for the resulting modes and frequencies of the substructure. Thus,

(k - X2m) x = 0 (5)

The matrix of eigenvalues is

A = diag (X2 X2 ... X2) (6)

where N = Ni + Nj is the total number of substructure degrees of freedom.
Since the structure may be unrestrained, there may be Nr rigid-body modes. The
normalized eigenvectors form the modal matrix

[il O](7)

el 8j2 ejN_3
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Several methods (e.g., refs. 9,12) employ loaded-interface normal modes.
These are obtained by augmenting the interface mass and/or stiffness in equa-
tion (5) to give

ii kij _ _X[ mii mij + ] = (8)kji (kjj + kjji (mjj + m jj) xji

k . and mijn are the interface "loading" matrices. The symbol 0 will be used

for the modal matrix corresponding to equation (8).

Constraint Modes

To complement fixed-interface substructure normal modes a set of con-
straint modes may be employed (e.g., refs. 2,4). A constraint mode is defined
by imposing a unit displacement on one physical coordinate and zero displace-
ment on the remainder of a specified subset of the substructure physical coor-
dinates. The procedure employed to obtain constraint modes is equivalent to
applying a Guyan reduction to all interior coordinates; i.e., the mass is
neglected in the top row-partition of equation (1) and unit displacements are
imposed successively on all junction coordinates giving

[kii kij] : 0 (9)

Thus, the Nj constraint modes which form the columns of the constraint mode
matrix T are obtained by solving the (multiple) static deflection problem

kii Tij = -kij (10)

Then,

T - (11)

If the substructure is unrestrained, T will contain Nr linearly indepen-
dent rigid-body modes. As noted in reference 4, constraint modes and fixed-
interface normal modes are orthogonal with respect to the stiffness matrix k.

Attachment Modes

Attachment modes are "static" modes which may be used to complement free-
interface substructure normal modes (e.g., refs. 3,11,15,18). An attachment
mode is defined by imposing a unit force on one physical coordinate and zero
force on the remainder of a specified subset of substructurephysical coordi-
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nates. Attachment modes will be described first for restrained structures
(for which k is non-singular) and then for unrestrained structures.

Attachment modes for restrained substructures.-Attachment modes for a
restrained substructure are obtained by solving the multiple static deflection
problem

ki ki Xi 0 ( 2L:: :~ L:1= Lj](12)k ji k jj - XjjiI ljj

Then the attachment mode matrix is defined by

xE id (13)

Attachment modes can be expressed as linear combinations of free-interface
normal modes. However, in a later section when the normal mode set is trun-
cated, the attachment modes will be modified so that they are orthogonal to the
kept normal modes. The modified attachment mode set will be called X.

Attachment modes for unrestrained substructures.-For an unrestrained sub-
structure, attachment modes may be obtained by using rigid-body inertia forces
to equilibrate applied forces and by temporarily imposing a set of Nr nonredun-
dant constraints. Let Or be the set of Nr (normalized) rigid-body modes of the
substructure and let

R = - mor 0T (14)rr

be the inertia relief matrix (ref. 15). Then, the attachment modes may be
obtained from

k rr k ru k rj 0 i0 F rj,

kur kuu kuj Xuji = R 0 F u] (15)

... kjr kju k jjj Xj• jj I.- F.

where r stands for the Nr restrained interior coordinates and u stands for the
Nu = Ni Nr unrestrained interior coordinates. From equation (15)
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Lkuu k Li F (16)
Finally,

SX Xuj (17)

Xjji

TRigid-body modes may be removed from the X matrix by premultiplying it by R

Truncation of Mode Sets

One of the most significant features of substructure coupling techniques
is that they permit the number of degrees of freedom of a system to be reduced
in a systematic manner through truncation of the mode sets which define the
generalized coordinates of the system. Hintz (ref. 15) has provided a compre-
hensive discussion of truncation of mode sets. Although truncation is usually
accomplished by elimination of some coordinates associated with substructure
normal modes (e.g., ref. 26), truncation may also be associated with other
coordinates such as constraint mode coordinates (e.g., ref. 16). Attention
will be confined here to the former, i.e., truncation of normal mode coordi-
nates. The subscript k will be used to denote the columns of 0 or 0 which are
kept. For example, the Nk modes which are kept form the columns of Ok, where

ek 0(18)kLJ

The diagonal matrix of corresponding eigenvalues will be denoted by Akk.

As noted previously, attachment modes can be expressed as linear combina-
tions of the free-interface normal modes. However, when the normal mode set is
truncated, the attachment modes can no longer be represented in terms of Ok. On
the contrary, it is possible to modify the attachment modes so that they are
orthogonal to the modes in Ok (e.g., see refs. 13,17). This will be illus-
trated here for attachment modes of a restrained substructure.

Note, in equation (12), that the columns of X correspond to columns of the
flexibility matrix k-'. The contribution of the kept normal modes to this
flexibility matrix is given by (see ref. 17)

k k kk k(19)
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The contribution of the modes in 0k to X can be removed from X leaving

x = x - o A-T (20)k kk jk

Energy Expressions for Substructures; Coordinate Transformation

The derivation of system equations of motion will be based on Lagrange's
equations of motion with undetermined multipliers. Expressions for kinetic
energy and strain energy of the substructures are required. These will be
given first for substructure physical coordinates and then in terms of sub-
structure generalized coordinates.

The kinetic energy and potential energy of a substructure are given by

T = m x , U =: xT k x (21)

respectively. The substructure physical coordinates, x, may be expressed in
terms of substructure generalized coordinates, p, by the coordinate transfor-
mation

x = T1 p (22)

When the above coordinate transformation is inserted into equations (21), the
substructure generalized mass and stiffness matrices are obtained. Thus,

T I p , U = IpT K p (23)

where l = T T K= TT k T (24)

Substructure Coupling; System Equations of Motion

To illustrate coupling of substructures to form a system, two substruc-
tures, a and B, will be employed. Let

p• U 0 Ot 0

p { , v , K (25)

The substructure generalized coordinates are not all independent but are
related by force equilibrium and displacement compatibility at substructure
interfaces. These relationships may be expressed by the equations

Ap=0 , Bp=0

respectively. Then, a Lagrangian may be formed as follows:
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L *T I pT nT TL p= T p + Ap+ B p (26)

The system equations may be obtained by applying Lagrange's equation in the
form

d (DL -•- L 0 (27)

ý -nJ n

where E n can refer to pn' n n or vn* Then equations (26) and (27) may be

combined to give

Ppp + K p = A T + BTV (28)

together with the constraint equations

A p = 0 , B p = 0 (29)

In the works cited previously, two basic approaches have been employed for
solving the coupled equations contained in equations (28) and (29). Both lead
to system equations of the form

Mq+Kq = 0 (30)

The method used by most authors will be referred to as the implicit
method. It involves the use of a coordinate transformation T2 to replace the
set of dependent coordinates, p, by a set of linearly independent coordinates
q. Thus,

p = T2 q (31)

Let p be partitioned into dependent coordinates, Pd, and linearly independent
coordinates, pk, as follows:

Pd
p { (32)

and let the constraint matrices A and B be combined to form the matrix C, i.e.,

C p E[]p = 0 (33)

Since C will have fewer rows than columns, equations (32) and (33) may be
combined and written in the form

[Cdd Cd] [Pd = 0 (34)
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where Cdd is a non-singular square submatrix of C. Then

I dd Cdk Pk (35)
p - I•

Let q • p.. Then equations (31) and (35) give

T 2 d d9,(36)

as the general expression for transformation matrix T2. The matrices M and K
in equation (30) are given by

M = T T K = T2 K T (37)

Goldman (ref. 7) solved equations (28) and (29) by an approach which will
be referred to as the explicit method. Let

(38)

Then equation (28) may be written

p + K p = CT a (39)
-I

a may be related to p by multiplying equation (39) by C p- and incorporating
equation (33). Then equation (39) may be written in the form

Sp + [I - CT (C ` C T)-i C -i] K p = 0 (40)

Goldman's final system equations are obtained by letting

p K -1/2 q (41)

Then equation (40) can be reduced to the form of equation (30) with

M = I , K = K - C T C -1 1/2 (42)

Since equation (41) implies no reduction. in number of coordinates, equation
(30) leads to some extraneous frequencies and modes in the Goldman method.
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Description of Various Coupling Methods

Table I shows the constituent vectors and matrices (i.e., TI, p, T2 , etc.)

of a representative selection of the substructure coupling methods named
earlier in the historical review. In all cases the methods fit into the
general formulation just described. However, in a few cases the notation has
been simplified by employing a partitioning of C (or B) different from that
indicated in equations (34) and (36).

CONVERGENCE PROPERTIES

Desirable characteristics for substructure coupling methods include
(e.g., see refs. 13,15): computational efficiency, interchangeability, compo-
nent flexibility, synthesis flexibility, static completeness, and test compat-
ibility. Although it is not within the scope of this paper to make a detailed
comparison of coupling techniques on the basis of the above criteria, a few
results concerning computational efficiency, i.e., convergence, will be
presented. Several authors have previously discussed convergence of system
frequencies (e.g., refs. 13,16,26,27). Rubin (ref. 13) also considered con-
vergence of mode shapes and shear and moment in beam elements.

Figure 1 shows frequency and RMS bending moment convergence properties of
mode 3 of a clamped-clamped uniform beam.

CONCLUDING REMARKS

A general formulation has been presented which permits substructure
coupling methods to be defined in terms of a few constituent matrices.
Although a detailed comparison of various substructure coupling methods has
not been within the scope of this paper, it is hoped that the presentation of
this general formulation will facilitate future studies of substructure
coupling methods. At the present time the use of substructure coupling as an
analysis tool seems to be a well-developed subject. On the contrary, much
remains to be learned about effective ways to use substructure coupling in
conjunction with experimental studies. It is hoped that this topic will
receive increased attention in the future.
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CORIOLIS EFFECTS ON NONLINEAR OSCILLATIONS OF

ROTATING CYLINDERS AND RINGS

Joseph Padovan
University of Akron

SUMMARY

The effects which moderately large deflections have on the frequency
spectrum of rotating rings and cylinders are considered. To develop the
requisite solution, a variationally constrained version of the Lindstedt-
Poincare procedure is employed. Based on the solution developed, in addi-
tion to considering the effects of displacement induced nonlinearity, the
role of Coriolis forces is also given special consideration.

INTRODUCTION

Numerous engineering applications (tires, turbines, satellites, etc.)
contain rotor systems which are essentially rings or shells of revolution
rotating about their axes. Obviously, in order to properly influence their
design, a thorough dynamic analysis is necessary. In this regard, numerous
papers have been published which deal with the free vibration properties
of such systems. Most such work has centered on stationary configurations,
as can be seen from the excellent surveys by references 1 and 2. The effects
of rotation, in particular Coriolis forces, have been discussed by references
3 to 7. With the exception of references 6 and 7 which treated small dynamic
deformations superposed on large static deformations, the previous investiga-
tions incorporating Coriolis acceleration forces have been limited to linear
shell theories. This is a shortcoming since numerous rotor systems, tires,
satellites, and turbines are flexible enough to undergo significant deflections
in the form of moderately large rotations.

It is the purpose of this paper to consider the effects which such
moderately large rotations have on the frequency spectrum of rotating struc-
tures. In particular, the analysis presented will consider the free
vibration characteristics of rotating rings and cylinders wherein the deflec-
tions involve moderately large rotations. Since the analytical model used
to characterize the stated problem involves nonlinear partial differential
equations, a modified version of the renormalized perturbation procedure is
employed to evaluate the overall solution. This modification was undertaken
since the usual renormalized procedure is unwieldy for systems of equations
involving a multitude of frequency eigenvalue branches and secondly yields
steady state results which are irregular for the linearized case. The modi-
fication employed involves prescribing the system energy in advance; hence,
a hierarchy of energy states is obtained from which the strained parameter
can be evaluated. The resulting solution employing this procedure is
regular, and thus, the proper limiting behavior is obtained for the linearized
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case. Based on the solution, in addition to considering the global effects of
nonlinearity, special emphasis is centered on determining the effects of
Coriolis forces in the range of deformations marked by moderately large rota-
tions. Hence the effects on the backward and forward traveling waves will be
evaluated.

GOVERNING EQUATIONS

Since the nonlinear oscillations of rotating, elastically supported rings
and infinite cylinders undergoing deflections involving moderately large rota-
tions are considered herein, the governing displacement equations of motion
employed to model the stated problem are defined by (refs. 2,4,6, and 7)

AiW, +A (V, +W)+(K-FRY)W-EA (--,',+V, 0 W, +V, eW, +WW, 0 0  -
1 2 eWee 2 2 c 2o 'tt-

3 2A WA2W +f COS (me) cos (wt)+ph(W 2•V,t-2, 2 W) = 0 (1)
2 2 tt t

A2 (V ee+W, 0+CWeWe )-ph(Vtt +2QWt- Q2 V) = 0 (2)

where

A EI A Eh (3)
1 R4 2 R2

such that E = Wm/R and e, t, ( ),8' ( ),t' W, V, Wm, E, I, h, R, p, P, K, W, and
o respectively represent circumferential space, time, space and time dif-
ferentiation, radial and circumferential shell displacements, maximum radial
displacement, Young's modulus, moment of inertia, shell thickness, radius and
density, internal pressure, foundation elasticity, exciting frequency, and
lastly, the rotational speed of the shell. Due to the inherent nature of the
circumferential coordinate space and the fact that the steady state response
is being sought, it follows that W and V are periodic in both space and time.
To round out the requisite field equations, the following potential energy
functional is associated with equations (1) and (2), namely

T 2Tr
y = f f {AIW, 2 +A (V,2 +2V, W+W2 )+cA (V, W,2 +WW, 2 ) +

00 1 00 2 2 0 2 00
122

1 2A W,4+(K +)W2+2f cos (me) cos (wt)W-ph[Q2(R*+W) +W 2 +

2V2+VI2+2q(R*+W)V,t-2QW,tV]}dedt (4)

where T - and R = R/W
24rw M
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SOLUTION

As noted earlier, the standard renormalized perturbation procedure has
the twofold difficulty of yielding irregular results as c*0 and secondly, is
unwieldy when more than one equation of motion involving several frequency
eigenvalue branches is considered. This difficulty is circumvented by pre-
scribing the systems potential energy in advance such that (W; V) = (W(e,t,f,
m,y); V(e,t,f,m,y)). Once the solution is obtained, the role of y and W are
reversed to that employed in the traditional version of the renormalized pro-
cedure. To initiate the solution, w is treated as the strained parameter;
hence W, V, and w are expanded in the following perturbation series

<W; V; W> = Z <Wi; V.; wi>Ei (5)
i=O 1

such that time is stretched so that T = wt.

In order to obtain the zeroth order equations, c is set to zero; this
yields

A W +(A +K+P )W +A V +ph(w 2W -
I 0,880 2 2 R 0 A2 Ol 0 ott

2w0o V Vo, -02W )+f Cos (me) cos (M) = 0 (6)

A (V +W ) ph(w 2V +2w 2W o- 2 V ) (7)
2 oee00 0, 0,TT 0)T 0

2rr 2ir

r = f f {A W2 +A (V2 +2V W +W2 )+(K+E)W2 +
0 0 10,00 2 ,0 0,0e 0 R0o

2
2f cos (me) cos (T)W -ph[Q 2 (R*+W ) +w2 W 2 +q 2 V2 +w2 V2 +

0 0 00,T 0 0 OT

2w 0o(R +Wo )VoT - 2w oWT V ]}dedT (8)

whereas with time, the potential energy space is stretched so that r = y/Q.
Since the steady state solution is sought,

(Wo; V0 ) = (Wco; Vco) cos (me)+(Wso; Vso) sin (me) (9)

where Wc0,... are time dependent. Employing equations (9), (6), and (7) reduce
to the following matrix set of ordinary differential equations, namely

W2 [B mY +W [B ]Y +[B ]Y +f cos (H) = 0 (10)0 in ~mOTT 0 2m ~mo,T 3m ~mo

such that
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y = (WcoV 0 ,W 0 , )T (1
~mo , Vso' Wso, Vco T

Noting that [B2m] is skew symmetric while [BIm] and [B 3M are purely sym-
metric, the steady state form of Y mo is given by

Y Z cos (T) + Z sin (T) (12)
~mo ~mc _ms

where Z mc and Z ms satisfy the matrix equation

fi I•2[ ][Bm I o[B~m I Z z

0EIm] 3M 0 2M(13)

0 0OE 2M IW0 [B M-B3 zMS[~[Bmo[B~m] wo[Bzm]-[Bm] Zims

Noting that the pencil of equation (13) yields the characteristic equation
of equation (10), equation (12) becomes unbounded for wo equal to the natural
frequency eigenvalues of the linear case. The properties of such eigenvalues
can be ascertained by developing the appropriate Rayleigh quotient. This is
possible by insertingymo ZmeJT into, equation (10) to yield a complex second
order regular polynomial rimatrix problem. The inner product of this expression
and Zm yields a bilinear form from which the following modified version of
Rayleigh's quotient is obtained, namely

-Tm[B ]z + -T E Z T B ]Z 2-Y
WO = 2ph Z ph Tm 4ph7 - h (14)

As can be seen from equation (14), Coriolis forces cause a twofold bifurcation
in the number of eigenvalue branches. Following the previous comments, the
relationship between r and co, W0, and V. must be evaluated by inserting equa-
tions (9) and (12) into equation (8); this yields

[A m4+A +K - ph(Q 2+W2 m2 )](W2  +W2  +W2co+W so) +

[A m2 -ph(Q 2+m2W2 )](V 2  +V2  +V2  +V2  )+2mA (V W +
2 o cco cso sco 550 2 sco cco

VssoW cso-VccoWsco-VcsoWsso)-2phwo0m(WccoVcso- WcsoVcco +
w w V V W +V W -

sco sso- sso sco- cco cso cso cco- sco sso

VssoWsco )] = r/f 2  (15)

where Wcco,*** ,Vsso denote coefficients of the W and V solution, namely
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(W0 ;V0 ) = (Wcco ;Vcco )cos(me)cos(T)+...+(W sso;Vsso )sin(me)sin(T)

As can be seen from equations (13) and (15), four potential energy resonances
are initiated for woO(wmf) wherein qlnf are the frequency eigenvalues of the
linear problem. Hence equation (5) is regular for c + 0 (the linear case).

The first order set of field equations can be obtained by taking the first
derivative of equations (1), (2), and (4) with respect to 6 and then setting c
to zero. This yields

A1W ,e6OO+A 2(V +W 1)+(K+-•'P)W1+ph(WOW ITT-2o0V 1T- 12W) =

A (.1412 -V W +V W +W W ) - 2ph(low W -2W ) (16)
22 0,0 0,00 O,0 0,0 0,00 0 0,00 1 0 1,TT 1 0,

A (V +W )-ph(W2 V +2ow W -E 2 V
2 1,00 1,0 0 1,00 0 1 ,T 1

-AW W +2ph(WWV +QeW ) (17)-2Wo,0 o,00 1 0l o0,TT 1 0,T

2Tr 2rr
f f {2AIW W +2A2(V +W )(V +W1)+A2(V +Wo)W 2  +

0 0 1 0,00 1,00 2 0,0 0 1,0 1 2 0,0 0 0,0

P [22(K+'RP)WoWI+2f cos (me) cos (T)W -2ph[ 2(R*+Wo)W1+
W W W2+W2W W +Q2V Vl+WoWlV2

W2 1 oTWIT 1 ,T

W2V V +QwR V +Qw R V +Qw WV +
0 0,T 1,T 1 0,T 0 1T+ 0 1 0,T

QW +WV -•owW V- W v-
0W 0 W ,t V 1 0o,T 0 ,TV 0-W 0 1, 1-

2lW1,TVo1}d1d•e = 0 (18)

Noting the form of the inhomogeneities appearing in equations (16) and (17), it
follows that W1 and V1 can be taken in the form

(W1 ;V 1 ) = (Wci ;Vci) cos (2T)+ (Wsz ;VsI) sin (2T) +

... +(W ss;V ss) sin (me) sin (t) (19)

where the coefficients Wcl,... are directly obtained upon inserting equation
(19) into equations (16) and (17). Furthermore, employing equation (19) in
conjunction with the first order potential energy constraint, equation (18),
the following functional relationship is obtained for wl, namely
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1, = 1 (l/D(2w 0,0), l/D(0,2m), l/D(2w 0,2m)) (20)

where D is the determinant of the pencil of equation (13). Hence for wo-O(umf),
wl is bounded and positive definite. This follows since l/D(2Uo,O),. . .etc.
remain bounded for Vwoe(O,c). Therefore, unlike the zeroth order set, W1 and
V1 remain bounded for Vwo.

In order to obtain the second order field equations, equations (1), (2), and
(4) are differentiated twice and then E is set to zero. This operation yields

AW2,00+A2 (V2 ,+W2 )+(K+.P-)W 2 +ph[W2 W -20ow V -0 ITT 0 2 ,T

Q2W] A2[W,0 W oe+VI,0 W o,+Vo,66WI V o e+V W W +V w +

WIW +WoW 11]+- AW2  W -,ph[2woWoW +1 0,0 0 1,00 2 2 0,0 0,00 2 0 0,TT

c2 2wWW -2Qw V -2Qw V (21
1 0,TT 12 0 1,TT 22,- 1 T(21)

A2(V2 +W )- ph(V 2 T +20W - 2 V) =

-A2(W W +W W )+ ph(t2V +2w w0V +2 1,8 0,00 0,0 1,00 1 0,TT 0 2 0,TT

2wNW +o2wlW ) (22)
2 0,T 1 1,T

27r 2 7r
0 = f f {A W2  +2A W W +A1(V +W1) 2 +

0 0 1 1,100 1 0,00 2,00 1 1,0 1

2A2(V o÷+Wo)(V2,B+W2)+ A2)(2(V o,+Wo)W 0,W, +

(V +W)W• )+ A W40 +(K+ P)(W2+2WoW2) +
2fe 1 0,0 2 0, I +)W~2 e ) +

2f cos (me) cos (T) W -ph[2Q 2 (R*+W )W +22W 2 +
2 0 2 1

W2 (2W W + W 2  )+4wW W + 2w w W 2 +
0 2,T 0,T W1,+T 0 1 O,T IT 2 0 0,T

o2 (2V V +V2 )+W2 (2V V +V2  )+4w w V. V +
0 2 1 0 2,T 0 ,-u IIT 1 0 1,T 0,T

2w w2V2 +2Qw (R*+W )V +2q (R*+W )V +
T 0 0 2,T 1 0 1,T

2Qw 2(R +W )V oT+2Qow WIV T+2Qw 1W I V OT+2wo W 2,TV -

(continued)
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2Qw V-~wW V -2•2wW V1-2QwlW V-
2o0 Wo,T V2- 2Q0 W2,T o I I,T 0

22WoTV o]}dedr (23)

As in the zeroth and first order cases, noting the inhomogeneities of

equations (21) and (22), W2 and V2 take the form, namely

(W2 ; V2 ) = (WC2 ; VC2 ) cos (2T) + ...

+ (W ss2; V ss2) sin (3me) cos (3T) (24)

Employing equations (24), (21), and (22), it can be shown that the following
proportionalities exist, that is

(W 2; V2 )c(W2 (1/D3 (w ,m)); V2 (/D 3 (w ,m))) (25)

Hence W2 and V2 become unbounded for w -O(wmf). The requisite form of w2 can be
obtained by inserting equation (24) into the second order potential energy
functional, namely equation (23). After extensive manipulations, this operation
yields the following proportionalities for w2, that is

W 2 = W 2 NUM(I/D4(w0o 'm))/W 2 DEN (I/D 2 (o0 'm)) (26)

Thus for o-O(wrmf), W2 -0(I/D 2 (wo,m)) where, since D2 (wmf,m) is singular, W2
is itself unbounded and negative definite. Additionally W2 and V2 are
themselves unbounded at such values of wo"

DISCUSSION

Stopping the solution at this point, W, V, and w are given by

(W; V; W)(W 0 ; V0 ; W0) + (W1 ; V 1 ; W1 )E +

(W12; V2 ; W 2)62 + O(63) (27)

Due to the procedure employed, it follows that W and V are regular in 6,
including E = 0. This result is~in contrast to standard renormalized
perturbation procedures which do not yield zeroth order solutions exhibit-
ing the proper unbounded behavior for w on the order of the linear system
frequencies.

The softening behavior of the ring or infinite cylinder can be directly
obtained by considering the fundamental relationship between w and r.
Before doing this, the nature of the wo dependency of w must be ascertained.
In particular, for wo~O(wmf),
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m-W 0 + 6O(l) - E20 ( 1 M)+ O(E) (28)0 D2 (wo,m)

where since W2 is negative definite and unbounded, w is itself negative
definite and unbounded. Such unboundedness occurs at each of the eigen-
values of the pencil of equation (13). Note as Q is set to zero, the two pairs
of eigenvalue branches merge back to the two frequency branches of the station-
ary state, and hence, the traditional frequencies are obtained.

Eliminating w from equations (28) and (15), it follows that since w is
unbounded and nega~ive definite for wo0 O(cmf), the overall steady state harmonic
behavior of the ring or infinite cylinder is of the softening type. Hence,
as 'w is raised or lowered, the usual softening type jump phenomenon is
encountered.

In the context of the foregoing, the results can be summarized by the
following remarks:

(1) Coriolis forces induce bifurcations in the frequency spectrum;

(2) Such bifurcations extend into the range of deflections marked by
moderately large rotations;

(3) All branches exhibit a softening type behavior; this applies to the
branches associated with forward as well as backward traveling waves;

(4) Driving frequencies in the neighborhood of the linear system
frequency may induce jump phenomena;

(5) Setting &+0 yields the results for stationary rings and cylinders.
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ON THE EXPLICIT FINITE ELEMENT FORMULATION OF THý DYNAMIC
CONTACT PROBLEM OF HYPERELASTIC MEMBRANES

J. 0. Hallquist and W. W. Feng
Lawrence Livermore Laboratory, University of California

Livermore, California

S•MMARY

Contact-impact problems involving finite deformation axisymmetric membranes
are solved by-the finite element method with explicit time integration. The
formulation of the membrane element and the contact constraint conditions are
discussed in this paper. The hyperelastic, compressible Blatz and Ko material
is used to model the material properties of the membrane. Two example problems
are presented.

INTRODUCTION

The purpose of this paper is to present a method for the dynamic analysis
of contact-impact problems involving hyperelastic compressible membranes. A
strain energy functional developed by Blatz and Ko (ref. 1) is used to charac-
terize the material of the membrane. Thi's element was added to HONDO (ref. 2),
a finite element code that explicitly integrates the equations of motion. The
contact-impact algorithm, which was also added to HONDO, was recently developed
by Hallquist (ref. 3) and is briefly described here.

Two examples are provided to demonstrate the capability of the method: in
the first, a flat circular membrane is inflated by a pressure loading into a
thick-walled sphere; and in the second, the sphere is impacted into the mem-
brane.

FORMULATION

Equation of Motion

Since an explicit time integration scheme is being considered, the equation
of motion becomes Mu= -(1)

where MR is th diagonal (lumped) mass matrix),d js a global vector of nodal ac-
celerations, P is the applied load vector, and is the stress divergence vector.
This equation is integrated by the velocity-centered central difference method.

Work was performed under the auspices of the United States Energy Research
and Development Administration under contract No. W-74-05-eng-48.
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Material Properties

The strain energy density per unit undeformed volume us for a compressible
hyperelastic material is expressed as

us = 1piI1 I 3 + 1 -V 2v (1 3- 1 (2)

where -j is the shear modulus, v is Poisson's ratio, and Ii is the ith strain
invariant. These invariants can be expressed in terms of the principal stretch
ratios AI, X2 , A3 in the meridional, circumferential, and transverse directions,
respectively, as

I A1 + A2 + ý
= 222 (3)

13 1  2 A3

For thin membranes, the stress component normal to the midsurface is assumed to
be zero; hence,A 3 can be expressed in terms of A1 and A2

X3 = ('IX2 ) 1-v (4)

and the strain energy density becomes a function of X1 and A2.

Membrane Element

An isoparametric axisymmetric membrane element is shown in Figure 1. The
R, Z, and meridional coordinates S of the undeformed configuration are related
to the natural coordinate L through

R = 2 (1 - L)Ri + 1 (1 + L)RJ

Z = 1 (1 - L)Z1 + 1 (1 + L)Zj (5)

s = 1 (1 - L)Si + 1 (l + L)Sj

and similarly for the displacement components ur and uz

1 ui + 1
r 2r 2 u6

ur = (I - L)u r+-(I +'r (6)

= (1 - L)ui + 2 (1 + L)uj

In the deformed configuration, the r and z coordinates along the midsurface are
given by

r=u +Rr (7)

z= uZ + Z

The principal sketch ratios X1 and X2 can be defined as
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r(dr\ (dz\2
=\J [\dS/SJ* X -R (8)

Substitution of equations (5) and (6) into equation (7), putting the result
into equation (8), and applying the chain rule leads to expressions for X,
and X2 in terms of the nodal point quantities

=1  + uj 1 )2 + (,j + uj 2] /2i
71R # r -Ur z -u

r r z z( 9 )
(1 - r)u, + (1 - L)ur.
(1- L)Ri + (I + L)Rj

where Z S=J Si.

Since 21 and A2 are now functions of the natural coordinate L, the total
strain energy stored within th-e membrane element during deformation can be ex-
pressed as the integral 1

U = rhk us RdL (10)

in which h is the thickness of the undeformed membrane.

The partial derivatives of U with respect to the nodal displacement compo-
nents yield nodal point forces that are subsequently accumulated into the stress
divergence vector. In the problem under consi'deration these derivatives can be
calculated very easily. For example, the nodal point force acting in the r-
direction at the ith node is given by

Ns

.) = Trhk @ l + T2 -- •RdL (l

ýu f-11-T1 ýu 1  2 Ur/
where Tj and T2 are Lagrange stresses in the meridional and circumferential di-
rections, respectively, A two point Gauss quadrature is used to perform the
above integrations.

The lumped masses for each element are found by the addition of the off-
diagonal terms of the consistent mass matrix to the diagonal term, Each mem-
brane element yields the following contributions to the nodal point mass at
nodes i and j, respectively,

m = 2wpkh (R i/3 + RJ/6)1 (12)

m. = 27rpth (RJ/ 3 + Ri/6)

where p is the mass density of the undeformed membrane.

For stability the time step At is restricted such that the inequality
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At2 < 4 (13)
x2

is satisfied where x 2 is the maximum eigenvalue of M-IK in which K is the stiff-
ness matrix.

A time step At is calculated for every element in the mesh and 90 percent
of the smallest value is then used. For the membrane element A2 is calculated
exactly from

2 = I UD1,1(9 2 (14)
1 q~u i2  Duz! M \9332 Du j2 /

Contact-Constraint Conditions

Two elastic bodies occupying regions BI and B2 in the reference Konfigura-
tion at time t = 0 are shown in Figure 2. The boundaries of B1 and BV are de-
noted by aS1 and 3S 2 , rqspectirely. After deformation at ti~e t ý O, these
bodies occupy regions bl and b The boundaries of b1 and b are denoted by
Ds1 and 3s 2 . Whenever b1 and b0 are in contact, the nodal points on as' in the
contact region are constrained to slide along line segments connected by nodal
points lying on as2, Separation is permitted when the interface pressure is
negative. Impact and release conditions are applied whenever nodal points on
3s come into contact with as 2 . These conditions, which are based on the gen-
eralization of those given by Hughes, et al. (ref. 4),conserve linear and angu-
lar momentum.

Const)aint conditions must be imposed into the equations of motion for each
node of Ds in contact with a segment of 9s . These conditions are imposed
through a transformation of displacements which is performed at the beginning of
each time step. In this transformation the radial and vertical displacement com-
ponents of the node on as1 are transformed into a displacement component tangen-
tial ýo the segment and a relative displacement component normal to the segment
of as on which it rests. Since no separation is permitted during the time step
the displacement, velocity, and acceleration of this latter component are set to
zero. A transformation matrix I is constructed which relates the vector of
global displacements ii to a vector W' containing the transformed components

u = T (15)
Letting T remain constant throughout the time step and differentiating equation
(15) with respect to time yields

S= T i' (16)

Equation (16) is ggbstituted into equation (1) and the resulting equation is
premultiplied by TL in order to obtain the modified equations of motion

M' = 1 t(• -T) (17)

which-contains the contact constraints. Here M' = Tt MT. Although 9 is diag-
onal M is not. For computational efficiency the appropriate off-diagonal mass-
es are summed to the diagonal.

After equation (17) is solved for u , the normal accelerations of the nodes
of as1 on as relative to as2 are set to zero, The global accelerations then
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follow directly from equation (16),

EXAMPLES

In the following examples, all physical quantities are given in nondimen-

sional form. Any consistent units may be assumed without altering the results.

Inflation of a Membrane into a Thick-Walled Sphere

A flat unstretched circular membrane with a thickness of 0,01 and a radius
of 2.0 is positioned beneath a thick-walled sphere having an inner radius of
0.40 and an outer radius of 0.60. In the undeformed configuration, the distance
measured perpendicularly from the center of the membrane to the center of the
sphere is 1.20, The hyperelastic material described by equation (2) is used to
model the material of both the membrane and the sphere with v and 'P set to
0.463 and 150. Densities of 1.5 and 0.15 were assumed for the material, of the
membrane and sphere, respectively,

The membrane is inflated by a pressure p defined by

0 < t < 0.11 p = 1.250

0.11 < t < 0.15 p = 1.250 - 1 . 1 2 5 (t .0"ll ) (18)

t > 0.15 p = 0.125

and is brought into contact with the sphere.

In Figure 3 the deformed shapes at various times throughout the deforma-
tion time history are shown. At late times some wrinkling occurs (for example,
note the last frame) and the calculation ceases to be meaningful, A total of
eighty elements were used in the calculation. Forty elements were of the mem-
brane type.

Thick-Walled Sphere Impacting a Membrane
In this example the thick-walled sphere impacts the flat circular membrane

with an initial velocity of 1.0. The dimensions and material properties of the
membrane and sphere are identical to those of the preceding example. In Figure
4 the deformed shapes at various times are shown. Maximum deflection occurs at
the center of the membrane at approximately t = 0,90 after which rebound begins.
Separation of the sphere and membrane occurs at approximately t = 1.94.

In the above examples the stress at the center of the membrane increases
significantly after the initial contact thereby providing-evidence that a large
amount of sliding occurs during contact.
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Figure 1.- Definition of membrane element.
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Figure 2.- Two bodies in the reference and
deformed-contact configurations.
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tO.O t=0.045 t=0.088

t 0 .1350 t =0. 171 t =0.202

t-0..233 t=0.264 t--0.296

Figure 3.- Inflation of circular membrane into

thick-walled sphere.

I =0.00 t=0.26 t=0.58

t=0,89 t=1.21 t=1,52

t=1.84 t=2.15 t=2.47

Figure 4.- Impact of thick-walled sphere into
circular membrane.

424



FREE VIBRATIONS OF LAMINATED COMPOSITE ELLIPTIC PLATES

C. M. Andersen
College of William and Mary

Ahmed K. Noor
Joint Institute for Advancement of Flight Sciences

The George Washington University

SUMMARY

A study is made of the free vibrations of laminated anisotropic elliptic
plates with clamped edges. The analytical formulation is based on a Mindlin-
Reissner type plate theory with the effects of transverse shear deformation,
rotary inertia, and bending-extensional coupling included. The frequencies
and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunc-
tion with Hamilton's principle. A computerized symbolic integration approach
is used to develop analytic expressions for the stiffness and mass coefficients
and is shown to be particularly useful in evaluating the derivatives of the
eigenvalues with respect to certain geometricand material parameters.
Numerical results are presented for the case of angle-ply composite plates
with skew-symmetric lamination.

INTRODUCTION

Although a number of studies have been devoted to the free-vibration
analysis of isotropic elliptic plates (refs. 1 to 4), investigations of
orthotropic plates are rather limited in extent (refs. 5 and 6), and to the
authors' knowledge, no publications exist dealing with the free vibration of
laminated anisotropic elliptic plates. The present study focuses on this
problem. More specifically, the objectives of this paper are (1) to present
a computational procedure based on the use of computerized symbolic integration
in conjunction with the Rayleigh-Ritz technique for the free-vibration analysis
of laminated anisotropic elliptic plates and (2) to study the effect of vari-
ations in the lamination and geometric parameters of the plate on its
vibration characteristics.

The analytical formulation is based on a form of the Mindlin-Reissner
plate theory with the effects of transverse shear deformation, anisotropic
material behavior, rotary inertia, and bending-extensional coupling included.
The frequencies and mode shapes are obtained by using the Rayleigh-Ritz
technique in conjunction with Hamilton's principle. The stiffness and mass
coefficients are developed using the symbolic and algebraic manipulation
language MACSYMA (refs. 7 and 8). Computerized algebraic manipulation, in
addition to reducing the tedium of the analysis and the likelihood of errors,
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was shown to be particularly useful in evaluating the derivatives of the
eigenvalues with respect to certain geometric and material parameters. Other
applications of computerized algebraic manipulation in structural mechanics
are reported in references 9 and 10.

SYMBOLS

ala 2 semimajor and semiminor axes of elliptic plate

C ,ypC 3ý3 extensional and transverse shear stiffnesses of plate,
respectively

D Uyp bending stiffnesses of plate

EL ET elastic moduli in direction of fibers and normal to fibers,
respectively

F aByp stiffness interaction coefficients of plate

GLT GTT shear moduli in plane of fibers and normal to plane of
fibers, respectively

h plate thickness

[K] element stiffness matrix

K.. stiffness coefficients
13

[M] mass matrix

M. . mass coefficients1J

mom 1 m2 density parameters of plate

T kinetic energy of plate

U strain energy of plate

u ,w displacement components in coordinate directions

0 fiber orientation angle of individual layers

VLT Poisson's ratio measuring strain in T-direction due to
uniaxial normal stress in the L-direction

Hl(u,w,4 ) functional defined in equation (1)

P material density of the plate
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rotation components

{•p} vector of undetermined parameters

•i. ith component of vector {•}

plate domain

W circular frequency of vibration of the plate

a ax

MATHEMATICAL FORMULATION

The analytical formulation is based on a form of the Mindlin-Reissner
plate theory with the effects of transverse shear deformation, anisotropic
material behavior, rotary inertia, and bending-extensional coupling included.
A displacement formulation is used with the fundamental unknowns consisting
of the displacement and rotation components of the middle plane of the plate
u., w, and Cýa. (See fig. 1 for sign convention.) Throughout this paper, the
range of the Greek indices is 1,2 and a term in which any Greek index appears
twice is to be summed over that index. The fundamental unknowns are assumed
to have a sinusoidal variation in time with angular velocity w (the circular
frequency of vibration of the plate). The functional used in the development
of the stiffness and mass matrices is given by

T(u,,w, ) = T - U (1)

where

U = •a uP + 2F 1yp t y p

+ Da~yp D a Y P (2)

+ C P8 (w •w + 2ý •w + •ag]dQ

a3$3 a ~ a C at

1 2f o(uaua +ww) +2muaa + m2 CLCP d2 (3)

In equations (2) and (3), C sYp, aDyp, and F,,YP are extensional stiff-

nesses, bending stiffnesses, and stiffness interaction coefficients of the
plate; C 3ý3 are transverse shear stiffnesses of the plate; mo, mi, and
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m2 are density parameters of the plate; Q is the plate domain; and

a Dx

The displacement and rotation components are approximated by expressions
of the form

{:w [N] {~}(4)

where [N] is a matrix of a priori chosen approximation functions and {i}
is a vector of undetermined coefficients. In the present study the functions
in the matrix [N] are chosen to be polynomials in xl and x2*

The stiffness and mass matrices of the plate are obtained by first
replacing the generalized displacements in equations (2) and (3) by their
expressions in terms of the approximation functions and then applying the
stationary condition of the functional H, namely,

611 = 0 (5)

If the undetermined coefficients {f} are varied independently and simultan-
eously, one obtains the following set of equations for the plate:

[K]{p} = w 2[M]{} (6)

where [K] and [M] are the stiffness and mass matrices of the plate, res-
pectively. The matrix [K] is symmetric and positive definite and the
matrix [M] is symmetric. The eigenvalues and eigenvectors are obtained
by using the technique described in reference 11.

EVALUATION OF STIFFNESS AND MASS COEFFICIENTS

The stiffness and mass coefficients were evaluated using the computerized
symbolic and algebraic manipulation system MACSYMA. The MACSYMA program used
in evaluating these coefficients is given in the appendix. The major tasks
performed on MACSYMA are

(1) Selecting approximation functions for each of the fundamental
unknowns with undetermined coefficients {14} in equation (4) and developing
analytic expressions for the strain and kinetic energies as quadratic
functions in {0}

(2) Specifying a pattern-matching technique for evaluating the integrals
over the elliptic domain (using the function INT(F) (see appendix))

428



(3) Forming the stiffness and mass coefficients as second derivatives
of the strain and kinetic energies with respect to the undetermined coef-
ficients as

K _a___ 2 M. a 2T (7)K.. = w2M.. - 7
l] aýi Djý • •

In view of the symmetry of Ki. and Mij, only the upper triangular portions
are formed in a machine readable (LISP) format. These are subsequently
converted using the MACSYMA system to a form which closely resembles FORTRAN
code (the MACSYMA program used in the conversion is not included in the
appendix). Finally, a TECO program (DEC's editor for PDP-10 computers) is
executed to produce the final code.

The aforementioned computerized algebraic manipulation approach signifi-
cantly reduced the tedium of the analysis and the likelihood of errors.
Moreover, since analytic exact expressions are obtained for both the stiffness
and mass coefficients, the derivatives of the eigenvalues with respect to any
of the material or geometric parameters can be readily computed by using the
following formula (ref. 12):

a---i:d {iT K - W i (8)

where d refers to any of the material or geometric parameters of the plate and
subscript i refers to the ith eigenvalue and eigenvector. In equation (8),
the eigenvectors are assumed to be [M] orthonormal, i.e.,

{Wi}T [M] Wp}i = 1 (9)

The two matrices FaK and DO can be easily evaluated using the MACSYMA
system. U U

Equation (8)*shows that the derivatives of the eigenvalues with respect
to any of the geometric and material parameters of the plate can be calculated
with little extra work. These derivatives can be used to obtain an approxi-
mate estimate for the eigenvalues corresponding to a modified (new) value
of the parameterL without having to resolve the eigenvalue pronlem,
equation (6). To accomplish this, a first-order Taylor's series expansion
of the eigenvalues in terms of the problem parameter is used (see ref. 12)

a 2
2 2 i

(Wý) w. + (d* - d) a (10)

where an asterisk refers to a modified (new) value.
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NUMERICAL STUDIES

Numerical studies were conducted to investigate the effects of variations
in the plate geometry and lamination parameters on the vibration characteris-
tics of elliptic plates with clamped edges. Angle-ply laminates having
antisymmetric lamination with respect to the middle plane are considered.
The material characteristics of the individual layers were taken to be those
typical of high-modulus graphite-epoxy composites, namely,

E L/E T=40 G LT/E T=0.6 G TT/E T=0.5 V LT=0.25

where subscript L refers to the direction of the fibers, subscript T refers
to the transverse direction, and VLT is the major Poisson's ratio. The fiber
orientation was taken to be +6/-6/+6/-6/..., (0<8<45). All numerical studies
were obtained using the Rayleigh-Ritz technique with 10-term approximation
functions for each of the fundamental unknowns. The special symmetries ex-
hibited by the free-vibration modes of antisymmetric laminates were utilized
in the analysis (see refs. 13 and 14). The four combinations of symmetry and
antisymmetry with respect to the x1 - and x 2 -axis have been considered. Typical
results are presented in figures 2 to 4 showing the effects of variations in
each of the following parameters on the vibration frequencies: (1) the aspect
ratio of the plate al/a2, (2) the number of layers of the plate NL, and
(3) the fiber orientation angle 6 of the individual layers.

Figure 2 shows that for elliptic plates having the same h/a 2 , the fre-
quencies of free vibration decrease with the increase in the aspect ratio
al/a 2 . The differences between the frequency curves for thick and thin
plates in figure 2 are mainly attributed to transverse shear deformation. As
expected, these differences are more pronounced for the higher modes. Figure
3 shows that the frequencies increase rapidly as the number of layers increases
from 2 to 4. Further increase in the number of layers does not have signifi-
cant effect on the lower frequencies. Figure 4 shows that the minimum
frequency associated with each of the four basic symmetric-antisymmetric modes
increases with the increase in the fiber orientation angle 6 from 5' to 45'.
This is not true, in general, for the higher modes.

CONCLUDING REMARKS

The free-vibration response of anisotropic plates with clamped edges is
studied. The analytical formulation is based on Mindlin-Reissner type
theory with the effects of transverse shear deformation, rotary inertia, and
bending-extensional coupling included. The frequencies and mode shapes are
obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's
principle. A computerized symbolic integration approach is used to develop
analytic exact expressions for the stiffness and mass coefficients and is
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shown to be particularly useful for evaluating the derivatives of the eigen-
values with respect to certain geometric and material parameters. Numerical

results are presented showing the effects of variation in the geometric and

material parameters on the free-vibration response of composite elliptic
plates with clamped edges.
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SOME DYNAMIC PROBLEMS OF ROTATING WINDMILL SYSTEMS*

John Dugundji

Massachusetts Institute of Technology

SUMMARY

The basic whirl stability of a rotating windmill on a flexible tower is
reviewed. Effects of unbalance, gravity force, gyroscopic moments, and aero-
dynamics are discussed. Some experimental results on a small model windmill

are given.

INTRODUCTION

There has been a renewed interest in the use of large windmills for

generating power. Such large, rotating structures mounted on tall flexible
towers may give rise to significant vibration and fatigue problems. A good
deal of the experience and knowledge gained during the last few years in con-
nection with helicopter rotors and tilt-wing proprotors can be applied to such
large windmill systems. However, there are unique features of windmills and
their operating environment that will have to be explored individually.

A basic description of general rotating machinery problems can be found in

Den Hartog's book, (ref. 1). Loewy (ref. 2) presents a good review of rotary
wing dynamic and aeroelastic problems. More recently, a NASA special publica-
tion (ref. 3) gives a good sampling of current problems dealing with rotor
dynamics. References 4, 5, 6 are typical of recent investigations of problems
of large windmill systems. The present article will first review some dynamic
problems of a rotating windmill on a flexible tower, then present some pre-
liminary experimental results on a small windmill model.

REVIEW OF THEORY

Figure 1 shows the model used 'or representing a windmill rotor mounted on
a flexible tower. There is an absolute axis system x, y, z fixed in space,
and also an axis system xs, y s, zs along the windmill shaft and having xs lie
in the vertical plane (plane of xz). The ith blade rotates about the axis zs
with a constant speed Q, and can lag an angle ýi in xsysplane and flap an angle

Si perpendicular to xsYs plane. Any point,'7, on the blade can be expressed
relative to the shaft axes xs, Ys' z as

*The author would like to acknowledge the support of National Science

Foundation Grant AER75-00826.
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x = e cosi + • cos (i + .) cos

Ys = e sin •i + • sin (•i +cpi) cos .

zs = ý sin . (1)

In the above, ýi represents the angular position of the ith blade and e is the
hinge off-set. The origin of the shaft axis is assumed to translate fore-and-
aft a distance qF and laterally a distance qL" Associated with these deflec-
tions are an angular rotation OFqF about the ys axis, another possible rota-
tion 8LqL about the xs axis, and a vertical deflection hvqF in the x direction.
The coefficients OF, OL, hv can be obtained from the vibration modes of the
tower (often, hv ; -h F). The shaft axes can be located relative to the fixed
axes by performing a rigid body rotation about the ys axis and about the xs
axis respectively. This gives the relation

x Cos 0 F qF sin 0 F qF sin e L qL -sin e F qF Cos eL qL xs

y = cos eLqL sin eL q LYs (2)

z sin 8FqF -cos 0FqF sin eLqL cos cFqF Cos eLqLU zs
22

Using the small angle approximation, sin eFqF `O FqF, cos eFqF 1 - q F/2 etc.
in equation (2) and combining with equation (1) and the appropriate de lections
gives,

x = hvq + (1 - 02qF/2)x + e q Y -qFqF z
22

y = + (1 - 2qL2/ 2 )Y + LqL z (3)
z =qF + aFqF xs qL Ys + (I 2 /2 e2 q2/2z

F= + F - FqF + L s

where xs, Ys, zs are given by equation (1). The velocity components x, Y,
are obtained from equations (3) by differentiation with respect to time t.
Then, by forming the kinetic energy of the blades and tower, and placing into
Lagrange's equations, one can obtain the equations of motion of the windmill
system. To simplify the lengthy algebra involved, it was assumed the hinge
offset e = 0, and only those terms leading to linear terms in the final equa-
tions of motion were retained. The following standard mass integrals were de-
fined for the ith blade,

Mi = fdm, Si =fE dm, I. =fE2 dm (4)

In the development, a two-bladed rotor was assumed with slightly unequal
masses, such that M1 = Mý + Mu/2 and M2 = MS - Mu/2 where Mý was the average
mass and Mu the unbalance in mass of the blades. Similar definitions were
made for the average and unbalance in moment Sý and Su, and in moment of
inertia Iý and Iu. The vertical gravity loads were put in by writing the
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incremental work as,

6 W = f[f 6x + f 6y + f 6y]d< = ZQn6qn (5)

where f = -mg, f = = = 0, 6 qn represents 6 qF3, 6qL' 61 i,6  respectively,
and 6x, 6y, 6z are found by differentiating equation (3). A similar procedure
could be used for obtaining the aerodynamic forces acting on the blade. How-
ever there, it is convenient to relate the air forces perpendicular and paral-
lel to the blade axis C.

The final, linear equations of motion in terms of the six coordinates qF'
qL, ý1, ý2, i'P '2 are,
[ 2 + (13  + h ) + 2e0F Cos ' + 0F21 (1 + cos 21] 0F"su sin

"+ 0F I sin 2 l]20qF - 8F Su cos i 12qF + cFqF + kFqF - 0L[Su sin 'i

"+ eFII sin 2 l] nL - 0L [ Su cos i + 0F1 (1 + cos 2'l 1)] 2 0qL + 0LSu sin •lQ2qL

C ~2"+L(Si + 0F Ii cos i +)•i + ZF Ii cos 'i 21. - X(h Si sin 'i)'i
i 2 2- Eh S. cos 'i 2Q$i + &h S. sin = ' h S i2 cos'+g[-h 2Mv i tv ii v u l v • g[hv 3

2+0F2 co P - 0 F0 L S sin 'Pi qL + Z0FSi 1 i-] + F(6+ leF S u Cos 1i qF e F 0LSu si eFi +Q FA (6)

- 0 L[Su sin 'I + OFI I sin 2'PlqF + 0L0 F1 (1 - cos 2'l 1) 20qF + [MTL + 2M

+ 021 (1 - cos 2'P)J4 + 0 i13 sin 2'P2l + c + kq Z- I0 sin

2 i 2-2 0LIi sin ý•2•. + ES icos 'P. isi sin'P. 2 ES cos Qi.'i

= Su 2 sin ' - geFOLSu sin lq F + QLA (7)

[Si + 0 FIi Cos ]i -M F i0 i i 2 sin ' P 2i qL FLIi COS Vi 2Q L

+ I.3. + IiQ2 i + c 1i + k ýi 3g[ F SFqF + Si cos 'i.i] + Q iA (8)

i = 1,2

- h s sin'PiF + S. cos 'Pi4L + I.'P. + c i k + k P = g[S. sin 'Pi

+ Si cos ý'iPi ] + Q iA (9)1 11 'P1Ai = 1,2

In the above equations, the knqn and cnqn terms represent structural stiffness
and damping, the g terms represent the effect of gravity loads, and the n
terms represent the aerodynamic forces. The MTF and MTL are the generalized
tower masses corresponding to qF and qL respectively.
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Some of the gravity loads act as stiffness terms in the equations. The blade
coordinates ýl = Qt and ý2 = i + ff. For the two-bladed case, it is sometimes
convenient to introduce the symmetric and antisymmetric blade variables,

ýs = (ý1 + 2)/2$ ýA = (1 - E2)/2, ýs, ýA = etc. (10)

to lessen the coupling between the degrees of freedom. Indeed, for a com-
pletely balanced rotor without gravity effects, the 4s would be uncoupled from
the other equations. In general though, all six coordinates are involved.

Equations (6) to (9) are a linear set of equations with periodic co-
efficients, subjected to gravity, rotor unbalance Su) and aerodynamic wind
forcing functions. The gravity loads act directly on the blades while the un-
balance loads shake the tower which in turn couples into the blades. In addi-
tion to forced response, the homogeneous equations themselves may have strong
instabilities present. These are generally investigated by the use of Floquet
theory for these periodic coefficient equations. It should also be mentioned
that for a three or more bladed rotor, the analysis is generally easier since
one can eliminate the periodic coefficients by a suitable transformation of
coordinates (at least for the balanced rotor, without gravity effects). See
for example reference 7.

Various investigators have examined different subcases of equations (6) to
(9). Coleman and Feingold (ref. 8) first looked at the case qF = 0, ýi = 0,

6L = 0, with no gravity, unbalance, or aerodynamics present. Strong mechanical
instabilities of a whirling nature were found to be possible at certain rota-
tional speeds, involving coupling of lateral motion qL with lag angle 4A.
This is the so-called "ground resonance" helicopter phenomenon. Reed (ref. 9)
looked at the case ýi = 0, ýi = 0 with aerodynamics present. Again, strong
instabilities were found involving qL and the vertical hvqF coupling through
the mechanical and aerodynamic gyroscopic forces (•qF, •qL terms). This is the
so-called "propellor whirl" flutter. Young and Lytwyn (ref. 10) looked at the
case ýi = 0 with aerodynamics present. This is essentially "propeller whirl"
with flapping. Johnson (ref. 11) has looked in detail at the whole coupled
system, but without gravity and unbalance effects in connection with his studies
of proprotors. Equations very similar to the ones here are presented there.
Finally, it should be mentioned there is a whole series of detailed investiga-
tions of rotors attached to fixed hubs (qF = 0, qL = 0) which emphasize the
aerodynamic interaction between blade flapping, lagging, pitching and nonlinear
dynamic effects brought on by large initial coning angles for the blades. See
for example, references 4, 5, and 6.

EXPERIMENT

Some preliminary tests were run on a small .915 m (3.0 ft) diameter wind-
mill placed in a wind tunnel. The general layout is shown in figure 2. The
windmill had generally 2 blades, cantilevered in both the flap and lag direc-
tions. The approximately uniform, untwisted blades had a .0762 m(3 in) chord,
and could be set at any incidence angle. For a few runs, 4 blades were
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attached to the windmill.

The weight of a typical blade was .175 kg (.386 lbs). The cantilever
natural frequencies of the non-rotating blades were measured as 33, 93, 172,
and 310 Hz for the 1 st flap bending, 1st lag bending, 2 nd flap bending, and
1st torsion modes respectively. These were corrected for rotational effects in
the standard manner, 2 = W2R + LQ 2 , to give the rotating natural frequencies
shown in figure 3. The tower stand had natural frequencies of 8.8, 16, 25 and
75 Hz for the lateral yawing, vertical pitching, lateral translation and verti-
cal translation modes respectively. The windmill was instrumented to measure
flap and lag bending moments at the blade root, and also lateral and vertical
accelerations of the tower near the front bearing.

The wind tunnel was run to about 18 m/sec (59.1 ft/sec), and after taking
data on windmill performance, the wind was turned off and the windmill would
coast down to zero rotational speed. This gave a continuous frequency record
through all the resonances of the system. Figures 4, 5, and 6 show the
measured bending moments and accelerations from such sweeps for a blade setting
angle 0 = 00. Many superharmonic resonances can be seen for the flap and lag
bending moments. These occur near integer orders of the rotation frequency as
can be seen from figure 3. Particularly strong vibrations occured at 2 per
revolution for both flap and lag. Indeed, lag moments near 10 times the static
gravity moments are present at 50 Hz. The corresponding accelerations show a
strong lateral resonance near 24 Hz. In these tests there was a small static
unbalance due to unequal blade weights. Subsequent tests with another set of
blades having a greater unbalance showed the same vibration patterns, but
with peak amplitudes increased more than double. Also, tests run with four
blades on the rotor showed similar strong resonances at 2 per rev6lution. The
strong resonances in figures 4 to 6 seem then to have been caused by the
rotating unbalance of the blade exciting tower stand frequencies which in turn
excite blade frequencies superharmonically. Further details of these tests
can be found in reference 12.

CONCLUSIONS

A brief review of some of the dynamic problems associated with large
rotating windmills has been given, together with some preliminary experimental
results. The importance of flexible towers and their interaction with the
rotating blade dynamics has been discussed. Although much work has already
been done in this area, many interesting dynamic problems remain to be re-
solved, particularly those involving rotors with built-in coning angles where
nonlinear dynamics must be considered.
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DYNAMIC INELASTIC RESPONSE OF THICK SHELLS USING ENDOCHRONIC THEORY

AND THE METHOD OF NEARCHARACTERISTICS

Hsuan-Chi Lin
Argonne National Laboratory

SUMMARY

The endochronic theory of plasticity originated by Valanis has been
applied to study the axially symmetric motion of circular cylindrical thick
shells subjected to an arbitrary pressure transient applied at its inner
surface. The constitutive equations for the thick shells have been obtained.
The governing equations are then solved by means of the nearcharacteristics
method.

INTRODUCTION

The problem of dynamic plastic response of shells has received consider-
able attention in recent years. Most of the published works are based on the
flow theory of plasticity and usually limited to isotropic linear work-
hardening materials. Theoretically, the flow theory is based on the existence
of an initial yield surface coupled with an assumed hardening rule to obtain
subsequent yield surfaces; an extensive bookkeeping is necessary to trace the
evolution of the yield surface which changes as deformation progresses. The
analysis of inelastic responses of the bodies is therefore complicated by path
dependence and the yield condition, which introduces different governing
equations in the distinct regions - elastic and inelastic. Valanis (ref. 1)
presented a new theory of plasticity termed endochronic theory, which com-
pletely abandoned the concept of a yield surface and its subsequent hardening
rule.

The endochronic theory of plasticity is based on thermodynamic theory of
internal variables and conforms to experimentally observed material behavior.
The basis of the endochronic theory is the assumption that the current state
of stress is a functional of the entire history of defoymation. The influence
of past deformation on the current stress is measured in terms of a mono-
tonically increasing time scale of strain-defined (ref. 1) or stress-defined
(ref. 2) endochronic time. This theory has been applied to give analytic pre-
dictions for the quasi-static mechanical response of engineering materials
(metallic (ref. 3) and non-metallic (ref. 4)), the dynamic response of a

This work was performed under the auspices of the U. S. Energy Research and
Development Administration. The author wishes to express his gratitude to
Drs. C. A. Kot and R. A. Valentin for valuable comments.
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thin-walled tube subjected to a combined longitudinal and torsional step
loading (refs. 5,6), and the dynamic plastic response of circular cylindrical
thin shells (refs. 7, 8). It has been shown that the theory does indeed have
the capability of explaining the observed phenomena quantitatively with
sufficient accuracy.

In this paper, the endochronic theory is applied to thick axially-
symmetric cylindrical shell subjected to dynamic loading. The governing equa-
tions are then solved by the method of nearcharacteristics.

FORMULATION OF THE PROBLEM

Consider a circular cylindrical thick shell with mean radius R and
thickness H. For the axisymmetric motion of shell, the stress and strain
states are

a= a 0 s =- iaa xr x r e xr

1

a aF a 0 s=- 3a 2ar-a -a 0 (1)xr r ru 3 xr r x 0

( 01 0sc- 0c 0aa Vr

6x E:xr 0 ex_ r-F 0 3cxr0

E: E 0 e=-1 3E: 2 e- 0 (2)xr r %u 3 xr r x 0
O 0 E 0 0 2E-Ex- E/

where a is the Cauchy stress tensor, 6 is small strain tensor, s and e are
the deviatoric stress and strain tensors, respectively, and subscripts x, r,
e refer to the components in longitudinal, radial, and circumferential
directions, respectively, Let U and W denote the displacements in the axial
and radial directions respectively at time t of the cross section a distance
x from a reference section, and u and w are the corresponding velocity

components. The equation of motion in the x and r directions have the
following form:

x xr Du xr
Dx + r P - R (3)

@a Da a a - ar+ xr _ w 0 r (4)
Dr Dx PDt R

where p is the density.
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The strain-displacement relations and the corresponding compatibility con-
ditions are

ýU x ýu
- = -=(5)x Dx ýt DX

W E0 w

___ =_ (6)r 3t r

•Wr ýw
Sr -- (7)r ýr Dt 3r

1 + xr _ 1 u (w
xr 2 D xx it 2 3r Dx

For isotropic material under isothermal condition with the assumption of
elastic hydrostatic response, the constitutive equations in the endochronic
theory can be found from reference 1 as follows:

dk as ds
2 - -+ d1 (9)

dý 1+ýC dc

akk = 3K Ekk (10)

2
d 1 = Kldckkd9 + K2 dijd ij (11)

where a, ý, K1 , K2 are the material parameters, p is shear modulus, K is bulk
modulus, kk, U, and ij are subscripts denoting coordinates, dc is the
endochronic time measure with the restriction that K1 + K2 /.3 ý 0, K2 ? 0,
and K1 and K2 may not both be zero. From the definition of s and p considered
in this problem, it is possible to express the time measure approximately as

ýdC = + [1+ i (x) + dc ) d 0  (12)

where 61 Et/ao, E is the asymptotic slope of the uniaxial stress-strain
curve for large strain, GO is the intercept of this slope with the stress
axis, and the positive sign holds for straining while the negative sign is for
unstraining of dca. Using (12) and equations (9), (10) and the compatibility
conditions (5) to (8) results in the following:

x r 0 Du

- -ý-- --9 + •t = a 2  (14)

451



c9ax + r + De _ 3K - 3K Dw (15)

Dt at at Dx Dr 3

xr 3u Dw 4Dt •• x=a (16)

at 9r ax

where
a 1 (2ax-=r-a ) w

a + 2 1 + r

(- -- c 1 ~i~ +2 a e w
a 2 = [E+• ;+a r

a3  
3K W

3 r

S22 xr w
a = +lr

4 1 +l+cx2 21/

:1: [i+:r 
+ (dc2l/

2 ý

and E is elastic modulus, v is Poisson's ratio. Equations (3), (4), and (13)
to (16) are the fundamental equations of the problem considered here.

NEARCHARACTERISTIC SOLUTION

The governing equations presented in the previous section together with
the auxiliary equations can now be written in matrix form as follows:

[A]{X} = {B} (17)

where

-3K -3K;l 1 1
-E 11 -v -v

I-v -v 1

[A]i -pP1 i I -p
1 1

] dx dr dt

dx dr dt
dx dr dt

dx dr dt
dx dri dt
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( x Dr De ThxrDu Dw Gx Dr o xrDu Dw
{x Dx Dx ax Dx x Dr Dr Dr ýr Dr ar

x r 0 xr ýu w

and a ra0-arIT

{B} = ( 3 ala 2a 4  r Rr d do xd da dudl

The above set of equations is of hyperbolic type; the conventional
bicharacteristic method would be very tedious for six dependent variables.
Using the method of nearcharacteristics first proposed by Sauer (ref. 9), we look
for characteristic-like lines in the coordinate planes along which the solu-

tion can be extended. (Sauer called these lines nearcharacteristics.) The
formulation and numerical technique in the nearcharacteristics resembles the
one-dimensional approach except that those partial derivatives which do not
lie in the plane of interest are considered of zeroth order in that particular
calculation. For example, when the bicharacteristics in the x-t plane are of
interest, then those terms in [A] containing partial derivative in r-direction
are combined with terms in {B} in equation (17). Now following the same
procedures as described in reference 8 for one-dimensional case, the near-
characteristics in the x-t and r-t planes, respectively, are obtained as follows:

dx = dr = 0,0 (18)

C dx dr-v E (19)
C dt dt V- (l)(i-2) p2v)

_ dx _ dr
dt dt - p (20)

The nearcharacteristics obtained here indicate that there are two character-
istic cones existing in the present analysis; one of them (eq. (19)) corre-
sponds to the longitudinal wave propagation while the other (eq. (20))
corresponds to shear wave. They are right circular cones with their center
lines perpendicular to the x-r plane as shown in figure 1. This is an expected
result, because the governing equations have constant coefficients for the
highest order terms. There are no convected terms appearing in the present
analysis. The compatibility equations along the nearcharacteristics can be
found in the same way as in the one-dimensional case. In the x-t plane, we
have:

dx

do = +- PCdu + Cddx + CCdt along dt = + C (21)
x D J 1 2 dt (21

da + PCsdw + C dx + C dt aldng A= + C (22)
xr - S 3 4 alngt -

d -= -V dx + C dt along dx = 0 (23)
r 1V x 5

du = -V du x + C±6dt along dx = 0 (24)
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where
a f

m xr xr
C1  R 3r

1 FEy (w iw ) l (2ax-ar-a) w
2 l+v 2v2  r + )r -2 - + c r

a9 - a Do0 r r
C3  R Dr

cO20xr w Du

4 ±1+ r+ -r

5r r - 2 1+ r

C E (w Dw) + a [(l+v)ax+(l-2v)ca -(2-v )ac ] rj
c6 +2 r r -+ 2+

Similarly in the r-t plane, we have:

da = +p C dw + C dr + C dt along = + CD (25)
r - D 7 8 alon D~

dr

da =+ PCsdu + Cdr + C dt along dr + C (26)
xr - S 9 10 d

dax - 1V dar + C1 1 dt along dr = 0 (27)

da9 =- 1i- dar + C1 2dt along dr = 0 (28)

where
a9 - a Do
0 r xr

C7 R 9x
_ 1 [gv (w Du) Cl (a-2ar+a ) w

C 1 LE2~ D~ aI - c
8 i+v - +-x) - 2 1+e r

a c
C xr xr

9 R ýx

C t2 CTxr w + Dw
T- a -

10 1 + r ýx

1 w l (( Du) a, [(2-v)ax-(l+)r-(1-2v)ae] j= - --++Var
Cll 2- r -•x -- 2 I+ýý

S1 E (w + D l [(2v-1)a c-(l+v)ar +(2-v)ae] wC1 2 - - 2. r + x +2 +rl
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Note that each set of the above characteristics lies entirely in planes paral-
lel to one of coordinate planes. Equations (21) to (28) have the appearance of
a one-dimensional method of characteristics formulation except that they con-
tain the partial derivative terms in the other coordinate direction. The
nearcharacteristics equation derived here can be solved numerically by the one-
dimensional technique. Two independent solutions can be obtained, each corre-
sponding to one of the coordinate planes.

NUMERICAL EXAMPLE

Consider a central segment of the Clinch River Breeder Reactor steam gen-
erator flow shroud with length 2k = 1.0668 m, mean radius 0.47 m, and thickness
0.0127 m. The material is 2.25 Cr-l Mo at 756 K. The pressure input function
was generated by the hydrodynamics module (ref. 10). A constant volume, step
pressure pulse of 13.79 MI'a was taken as the source pressure p at the center.
This is typical of the maxima observed in large sodium-water reaction experi-
ments during the transient period. Since the pressure loading was supposed to
be symmetric with respect to the mid-span, only half-length of the shell needed
to be considered here. The boundary conditions for the example are shown in
figure 2 as follows:

u = 0 and = 0 at x 0
xr

u = 0 and w = 0 at x=

U = 0 and a = -p(x,t) at r = 0 (29)
xr r

a = 0 and a = 0 at r = H
xr r

It has been shown in reference 11 that the two independent solutions, each
based on one coordinate plane, are numerically unstable while a calculation
method obtained by averaging the above mentioned independent solution yields a
stable solution. In view of equations (21), (22) and the boundary conditions
(29), it appears that the nearcharacteristics equations in x-t plane are not a
proper choice at r = 0 and r = H because ar are being prescribed there. There-
fore a combination technique is proposed here: on the boundaries r = 0 and
r = H the solutions are obtained from r-t plane nearcharacteristics equations
while at other points the solutions are obtained from the x-t plane. The
numerical results here show that this leads to a stable solution. The advan-
tage of this technique over the averaging method is a tremendous saving in
computation time. The resulting pressure history at the midspan (x = 0) of the
middle surface of the shell is 4hown in figure 3. The resultant dynamic
response of radial displacement and velocity as a function of time for the same
center point of the shell is also shown in the figure. In figure 4, shell
displacement profiles are shown for several times.

CONCLUDING REMARKS

The endochronic theory of plasticity originated by Valanis has been ap-
plied to study the axially symmetric motion of circular cylindrical thick
shells subjected to an arbitrary pressure transient applied at its inner
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surface. The constitutive equations for the thick shells have been obtained.
The governing equations are then solved by means of the nearcharacteristics
method. It has been shown that a stable solution can be obtained by treating
the radial boundaries in one coordinate plane while at other points the solu-
tions obtain from the other coordinate plane.
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VIBRATIONS AND STRESSES IN LAYERED ANISOTROPIC CYLINDERS

G. P. Mulholland
New Mexico State University

B. P. Gupta
Fluor Engineers and Constructors, Inc.

SUMMARY

An equation describing the radial displacement in a k layered anisotropic
cylinder has been obtained. The cylinders are initially unstressed but are
subjected to either a time-dependent normal stress or a displacement at the
external boundaries of the laminate. The solution is obtained by utilizing
the Vodicka orthogonalization technique. Numerical examples are given to
illustrate the procedure.

INTRODUCTION

The problems associated with the vibrations of plates and shells have been
of concern to many investigators over the years. Most of these works for a
single layered homogeneous material are summarized in two monographs by Leissa
(ref. 1,2) and the reader is referred there for further references. Since
composite materials have become popular due to their mechanical and thermal
properties, it has become necessary to study their behavior to determine their
unique characteristics before they can be used effectively. Recently Cobble
(ref. 3) and Dong and Nelson (ref. 4) considered the vibration problem in
laminated plates and the references contained in these papers summarize the
work in this area quite well. For works concerned with anisotropic and layered
cylinders, the book of Ambartsumyan (ref. 5) and Hearmon (ref. 6) and the
papers of Gulati and Essenburg (ref. 7), Stavsky and Smolash (ref. 8), Cheung
and Wu (ref. 9), and Nelson et al. (ref. 10) are representative.

In this paper, the radial vibrations of a layered anisotropic cylinder
are considered. The cylinders are solidly joined at their interfaces, are
initially unstressed, and can be subjected to either arbitrary time-dependent
normal stresses or displacements at the external boundaries of the system.
The solution is obtained by using a dependent variable transformation in the
displacement equation thereby obtaining a new partial differential equation
with homogeneous external boundary conditions; the Vodicka orthogonality
conditions are then applied to this new system to obtain the final solution,
The plane strain situation is considered for this analysis.

To illustrate the efficient and straight-forward manner in which solutions
can be obtained with this method, numerical examples are given for a two-layered
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composite. Results are presented for the displacement, normal stress,
tangential stress, and axial stress components at two interior positions.

SYMBOLS

B D constants, (eq. (1))

C ill' C i12 constants, (eq. (2))

E il' E i2' E i3 Young's modulus for r, 6, and z directions, dyne/cm 2

F j (t) function of time, (eq. (5))

H ij (rt) function of displacement and time, (eq. (10))

i Di(r) Bessel function of first kind of order D

L-jr) function of r, (eq. (4))Ij

PM , q M constants, (eq. (23))

r radial coordinate, cm

t time, seconds

u i (rt) radial displacement, cm

u m(t) function of time, (eq. (11))

W i weighting function, (eq. (17))

X im (r) eigenfunction

Y Di Bessel function of the second kind of order D

a M eigenvalues, I/sec

constant

Poisson's ratio

a ir' Cf ial a iz normal stress in r, 6, and z directions, dyne/cm 2

Yt)142(t) functions of time, (eq. (2))

ýl (r), ý 2 (r) functions of r, (eq. (9))
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PROBLEM

The partial differential equation describing the displacement u. for the
ith layer of a multilayered cylindrical composite whose material properties are
constant for each layer is given by

D2 u. Du. D.2 2 u.

(r,t) + 1 (r,t) - 1 u. (r,t) - (r,t) (1)
Dr 2rr r 2  i B. 2  Dt2

1

where

D.2 E 2i 1-V31iV 13i
1 Eli 1-v32iV23i

2 El i Il-v 3 2 iV 2 3 i
B.

1 p. A.
1 

1

A = (l-V 3 1 iv 13i )(l-v 32i V 231) - (v 21 i + V3 1 iv 2 3 i)(v 1 2i + v 3 2 iV 1 3 i)

The boundary and initial conditions associated with equation (1) are:

Du I uI (rI,t)
a r (' 1 tr(rl't) - 12 r I 1t)

b) ar(rl,t) = C I1 r + CI r (rlr (rkll't) Ckl 2 rk+1 k+l't) 2(t)

c) u i(r k+lt) = uil (r i+lt)

9u. u. Du
d) Cill Dr i+l' t) + Ci 1 2 ri+ 1 (r i+l't) = i+l,ll ýr (ri+l't) (2)

u i+l(r i+lt)
+ C. 1 .

i+1,12 ri+1

e) ui(r,o) = 0

Du.
f) (r,o) = 0
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where

C E li (-
Gill -1A (1-v 3 2 i 2 3 i)

1B

Eli +v v )
Ci12 A. A 21i () 31i ii23i)

1

The boundary and initial conditions given by equation (2) assume that either
the radial stresses or displacements are known at the external boundaries

and that the radial stresses and displacements are continuous at the interfaces.

To obtain homogeneous external boundary conditions, let

2
u.(r,t) = Ui(r,t) + jZ L.j(r)Fj(t) (3)
1 i j-l xj j

where

Lij (r) = A ijr + B.. j=l,2 (4)

F. (t) = (t), j=1,2 (5)
J. J

and
D.2

V2 L.. (r) - L.. (r) = 0 (6)
lj r 2  i]

For a cylinder with rI = 0 (solid cylinder) and DI<I, Eq. (4) and (6) take the
following form for i = 1:

Llj (r) = AIj

and

V2 L D12 -AljD2

j r2 Ij r2

The functions L ij (r) satisfy the following boundary conditions:
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dLi. Li (rl)

a) C dr (r) + C I2 1r = 1, j=l
Ill dr 1 112 r1  0, j=2

b) C dLkj + Lkj
kll dr (rk+l) k12 rk+ k+l 1 j=l

1, j=2 (7)

c) Lij(ri+l L i+l,j (ri+l)

dLij CLij (r i+l) dL..d) c L. ( )C 11 - C. 'z r
ill dr i+l i12 ri+ i+l,ll dr i+l

+ CL i+1,j (ri+l)
i+1,12 r.

Substitution of equation (3) into equations (1) and (2) yields the following
partial differential equation with homogeneous external boundary conditions:

D2 U. U. 3D.2 I D2U

D r + (r,t) -2 -U. (r,t) = 1 (r,t) + H . .(r,t) (8)r2 r rr 2 1B. 2 ýt2

1

with

rU1 U1 (rlt)

a) CIII ýr 1't) + C1 1 2  r1 1 0

C Uk Uk (rk+l, t)
b) Ckll Dr (rk+l't) + Ckl 2  rkl 0 (9)

c) U i(r i+lt) = U i+l(r i+lt)

Si (r i+l tUi+

,d) C i 11 (ri+lt) + Cil2 r=i+1 Ci+l,ll ýr (ri+l't)

Ui+l (r i+lt)
+ c. l 1+1 ir.

+1,12r+

2
e) Ui(ro) =-j L.j(r) Fj(O) = il(r)
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3U. 2
f) (r,o) =- j_1 Lij(r) Fj(0) = P2 (r)

and where

2
Hij (r,t) -B.2 J-- L ij (r)Fj"(t) (10)

SOLUTION: U. (r,t)
1

The problem has now been sufficiently simplified so that a series
solution for Ui(r,t) can be assumed where the orthogonality conditions developed
by Vodicka (ref. 11) can be utilized. Let

U. (r,t) = m uE Um(t)Xi(r)
1 = m i(11

r. --< r _< r i+1, i = 1,2,3,...,k,t _> 0

where the function u (t) is to be determined from the initial conditions and
the functions Xim(r) are eigenfunctions of the eigenvalue problem

B.2 d dX. 1 B 2 D. 2 2xr 1 r r dr (r)] r2 X im (r) + a 2X. (r) 0 (12)

with
dX Im X (r1)

a) CIll dr (r 1 ) + C1 1 2  r 01 0

dXkm Xkm (r k+1)
b) Ckll dr (rk+l) Ck12 rk+l - (13)

c) Xim (rk+l x i+l,m (rk+l)

dX.m Xim (ri 3 ) dXi+i

d ll C +imXi+l i r imi+m (r 3

X. (
i+l, 12 r i+1
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The solution of equation (12) is

X. (r) = A.J Di + B.J. D r , D. = non-integer (14)

imim D Bi /0 im -Dui aB. i 1

X i (r) = A. mJDi J r + B Y (aY r , D. = integer (15)
im i mr DiF. , myDu B

The eigenvalues, a , are found by substituting equations (14) or (15) into the
boundary conditions, (eq. (13)). The 2k linear homogeneous equations that
result from this substitution are then solved for the constants A. and B.
(ref. 12). im im

The orthogonality condition for the eigenfunctions is

r i+lk r
iEl W,2 r X im(r) X in(r)dr = (const. m ; n) (16)rl 0, m n

where

Wi2 = Cill/Bi2 = Pi (17)

The functions L. . (r) and H.. (r,t) will satisfy Dirichlet's conditions so
they can be expanded in an infinite series of the eigenfunctions

Lij (r) = m Xl jXim (r), j = 1,2 (18)

and

B.2  H..(r,t) _ [E mF."(t)] X. (r), j = 1,2 (19)
i uj m=1 mj im

where

2.. 1 k fri+l

m N irL (r) Xi (r) dr, j = 1,2 (20)•mj Ni 1j i
m J

and
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k f ri+l

N = il r [Xim2 (r)]dr (21)

r1I

Substituting equations (11), (18), and (19) into equation (8), we obtain the
following relationship:

2

m(t) + u (t) + E1 M.F "(t)] X (r) = 0 (22)
m-l dt2 m m j= m j' J i~r

The initial conditions asssociated with equation (28) are obtained in the

following manner:

Ui(r,o) = mZl um (o) X im(r) = •l(r) = EI Pl mj.Fj(o) Xim(r)

and

ýU.
COo

(r,o) = mE, um'(o) Xim(r) = ¢2(r) = -m Z mjF.'(o) Xim(r)

Thus
2

a) u r(o) = .l kmj F.](o) = Pm

2 
(23)

b) u '(o) = - El Imj F.'(o) = qm

The solution of equation (22) subject to the initial conditions (eq. (23)) is

q m . 2 z .m j
u (t) = - sin amt +p cos amt - a mj Fj"(t) * sin (amt) (24)

m m

where the symbol * denotes convolution. Substitution of equation (24) into

equation (11) and that result into equation (3) gives the desired relationship
for the radial displacement of the composite cylinders:

2 2
ui(r't) = j l L ij(r) F.(t) + MZl uM (t) Xim (r) (3)

where the functions Lij(r), Fj(t), Xim(r) and u m(t) are given by equations (4),
(5), (14) or (15), and (24), respectively.
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STRESS

The stress in the ith section of the composite is given by

E1 t ui u. (r+t
cir = ((i-' 3 2 ' 2 3 ) , (r,t) + (v 2 1 +v 3 1 23) r

E2 9ui u. r,t) (

i= E. ((v 1 2 + v 3 2v 1 3 ) •- (rt) + (1 - v3v3) r )(26)

V13E3 (1 ir 3 vie) 
(27)

Eiz ir 1 E2

EXAMPLE

Consider a two-layered composite with the following properties:

Layer 1 Layer 2

Pl = 1.73 gm/cm3  P2 = 1.75 gm/cm3

V121 = v 1 3 1 = 0.11 V122 = v1 3 2 = 0.14

V211 = v3 1 1 = 0.16 v2 1 2 = V312 =0.18

v2 3 1 = v3 2 1 = 0.1 v2 3 2 = V 3 2 2 = 0.22
Eli = 7.93 x 105 newton/cm2 El2 = 6.6 x 10 5 newton/cm2

E21 = E31 = 1.14 x 106 newton/cm2  E22 = E32 = 8.76 x 10 5 newton/cm2

The above properties are typical of some of the more common graphites (ATJ and
CHQ) (ref. 13). Assume further that there is a normal stress applied at the
outer boundary of the cylinder.

2 (t) = 6895 sin (10t) N/cm2

and the physical dimensions are

r, = 0; r2 = 2.54 cm; r 3 = 5.08 cm
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Following the procedures outlined in the text, the radial displacement and the
radial and tangential stresses within the composite are obtained; values at
two positions are shown in Figures 1 through 3.

SUMMARY

A closed-form solution for the radial displacement in layered orthotropic
cylinders has been obtained. The solution can be programmed on a modern
computer which enables one to calculate natural frequencies, displacements and
stresses quite easily. The functions Zmj and Nm can either be integrated
directly by hand or a numerical integration subroutine can be written to perform
the calculations.
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Figure 1.- Radial displacement of composite.
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Figure 2.- Radial stress compared to external excitation.
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Figure 3.- Tangential stresses within composite.
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INCREMENTAL ANALYSIS OF LARGE ELASTIC

DEFORMATION OF A ROTATING CYLINDER

George R. Buchanan
Tennessee Technological University

INTRODUCTION

The effect of finite deformation upon a rotating, orthotropic cylinder
was investigated by Sandman (ref. 1). He was able to predict the influence of
finite deformations and relate his results to the degree of orthotropy. In
this study an attempt has been made to study the same problem using a-general
incremental theory.

The incremental equations of motion are developed using the variational
principle discussed by Washizu (ref. 2). A more than adequate development of
the governing equations has been given by Atluri (ref. 3). Although his inten-
tion is to implement a finite element scheme to solve boundary value problems,
the equations are given in general tensor notation. Hofmeister, Greenbaum, and
Evensen (ref. 4) have presented an excellent discussion of the use of an incre-
mental analysis; again, their goal is the application of a finite element anal-
ysis. The governing equations are also developed in the treatise by Biot (Pef.
5), using both a geometrical viewpoint and a variational method. The governing
equations are rederived here, in somewhat less detail, using the principle of
virtual work for a body with initial stress (ref. 2).

The governing equations are reduced to those for the title problem and a
numerical solution is obtained using finite difference approximations. Since
the problem is defined in terms of one independent space coordinate, the finite
difference grid can be modified as the incremental deformation occurs without
serious numerical difficulties. The nonlinear problem is solved incrementally
by totaling a series of linear solutions. This method was used to solve the
same problem discussed in ref. 1 and gave identical results.

GOVERNING EQUATIONS

The derivation of the governing equations is based upon an incremental
variational principle (ref. 2). The body is assumed to be in equilibrium at
some arbitrary reference state along the load path. Let

x = a + u(I + .

be the transformation of a particle at point a to point x in the same space,
then u> is the displacement of the particle. At the beginning of some increment
of load, a is the initial coordinate and x is the current coordinate, and the
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two are identical. Let initial stresses Go, initial surface tractions t°, and
initial body forces ýo act on the body before the addition of the load incre-
ment. These stresses and loads are with respect to the initial coordinate axis
and are referred to a unit area before the loading increment is applied; hence,
they are referred to an undeformed area and volume.

Assuming the initial stress system is in equilibrium, it follows that,
+

div o° + fo = 0 (2)

'on = to (3)

+
where n is a unit normal vector. If the body is then loaded with some increment
of surface traction or body force, the total stresses at the end of that incre-
ment of load are the sum of the initial stresses and incremental stresses.

In order to formulate the principle of virtual work, first define a non-
linear strain tensor, such as,

D =E + N (4)

where

E= (Vu + VuT) (5)

N: (VuTVu) (6)

where u is the displacement field corresponding to D and D is referred to as
Green's strain tensor (ref. 6). The notation is basically the direct notation
used by Gurtin (ref. 7), although some symbols are different.

Introduce a virtual displacement 6 u and incremental stresses, body forces,
and surface tractions, o, •, and t, respectively. The principle of virtual work
for a body with initial stress may be written,

ý{(a°+U)6D--(f°+f)-6u}dv- (t°+t)'6udS = 0 (7)

where S1 corresponds to the surface on which stresses are specified. Substitut-
ing equations (5) and (6) into (7) and noting that o° and a are symmetric yields

fuoo-6Vu+ao-VuT6vu+a.6Vu+a'vu T 6Vujdv-f(?°-6•+W.6')dv-
V -- V

r(•o ++u+t-6u)dS = 0 (8)

Making use of 18(1) (ref. 7), equation (8) can be rewritten as

T T
f6u'[div a + div(O° Vu ) + div(oVu ) + ?]dv
v

_-T T- T T-
u[n + (GoVu ) n + (avu ) n t]dS

S1 --- 0 ~d

f 6u-Eao.oj - t°ldS - fu-Ediv ±o + fOldv (9)
1 v
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According to equations (2) and (3) the righthand side of equation (9) should be
zero; therefore, the equations of equilibrium become

dive + div[(o° + o)Vu T + f = 0 (10)

and the boundary condition is

T T- *
an + [(G0 + ])Vu In = t (11)

The assumption that the incremental strains are small implies that u is small
incrementally and

D = E, i.e. N = 0 in equation (4). (12)

The initial stress may not be small; hence, we retain 00 terms in equations.(i0)
and (11). It follows from equation (12) that for a linear incremental stress-
strain relation the incremental stress will be small. Therefore products of
oVuT can be neglected and the governing equations become

T
div o + div(aOVuT) + f 0 (13)

.--- T T-* -on + (oVu u = t (14)

Equations (2) and (3) serve as an error check and can be used at any increment
to determine the equilibrium status of the initial stress system.

The total stress u at the end of any load increment becomes the initial
stress 0O for the next load increment. Then, a must be referred to the initial
coordinates a and the deformed area in order to become 0O. The transformation
has been given by Fung (ref. 6) and can be rewritten as

GO = (p/P )V xaV T (15)
0 a--- a-

where p/po is the ratio of final mass to initial mass and Va indicates that the
operator is with respect to the initial coordinates •. It follows from equation
(1) that

V x = V (a+u) = 6 +-Vu (16)
a- a a-

where 6 is a unit tensor. For an incremental theory equation (16) may be written

6 + V u = ± + Vu = J (17)-- a -. . . .

It follows that

P/Po = detIVal = 1 - tr(Vu) (18)

where tr( ) represents the trace of a tensor. Combining equations (15) through
(18) gives the transformation

0O = [i - tr(Vu)]JOJT (19)
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where

jT = (6 + Vu)T = 6 + VuT (20)

GOVERNING EQUATIONS FOR A ROTATING CYLINDER

The general equations can be reduced to plane cylindrical coordinates in
order to implement the analysis of a rotating cylinder. The problem is one of
axisymmetric plane strain; hence, the displacement vector u reduces to Ur, the
radial component, which will be referred to as u.

The numerical method will be applied to the equation of equilibrium (13),
which in plane cylindrical coordinates may be written

a'r + (a - ao)/r + -Or' u' + O°(u" + u'/r) - yO u/r 2 +r r e r ra

p ±2(r + u) = 0 (21)

where f = p(r+u)w2 the inertia force, ar and 00 are the radial and tangential
stresses, respectively, and the prime denotes differentiation with respect to r.

Equation (12) is represented by the linear strains

Er = u' and E 0 = u/r (22)

Following Sandman (ref. 1) we assume a linear anisotropic stress-strain relation

ar = C11 u' + C1 2 u/r (23)

e0 = C22 u/r + C12 u/r (24)

Substituting equations (23) and (24) into equation (21) yields the incremental
governing equation

u" + u'/r - au/r 2 + (J u"/Cll + u'(G°' + GO/r)/Cllr 1r r 1

- CF U/Cllr 2 + pw2 (r+u)/C1 1  0 (25)

where

a = C 22/C and =C12 /C (26)

The boundary condition, equation (14), becomes

u'(l + GO/Cll) + 6 u/r = 0 (27)

The linearized incremental stress transformation, equation (19), becomes

00 = a (1 + u' - u/r) (28)
r r
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0 = C( - u' + u/r) (29)

NUMERICAL ANALYSIS

The governing equation (25) was solved using a finite difference technique.
The primary constraint to be dealt with is the magnitude of each increment of
strain. It must be small enough to insure that equation (12) is not violated.
After each increment of displacement is calculated, the finite difference grid
must be updated; hence, the finite difference equations must be reformulated
after each incremental solution. The difference operations may be derived as
follows

(du/dr)ic(u i+l-Ui )/Ar 2(u i-u i_)/Ar (u i+l-ui )/(Ar +Ar ) (30)

2uiI 2ui 2ui+l
(d u/dr =.~ 2u. - (31)i~i Ar l(Ar +Ar ) Ar Ar2 Ar 2(Ar +Ar )

The first incremental solution is merely the linear solution for the first
increment of body force. Before the second incremental solution is determined,
the initial stresses are assumed to be equal to the stresses obtained for the
first increment. These stresses are transformed according to equations (28) and
(29). The incremental displacement associated with each finite difference node
is added to the coordinate of that node; hence, a new initial stress problem is
formulated. The nonlinear analysis for the equation developed by Sandman (ref.
1) was obtained by transposing all nonlinear terms to the right. The displace-
ments for the previous analysis were used to evaluate the nonlinear terms, and
a solution for u is obtained. The calculated displacements are then used to
calculate new nonlinear terms, and the solution is repeated. This process con-
tinues until the two sets of displacements agree to within some tolerance.
This method was used to verify the results obtained by Sandman (ref. 1) and
appears to be accurate and efficient.

Equations (2) and (3) can be used at any increment to determine if the
initial stress system is still in equilibrium. If the initial stress system is
not in equilibrium, the solution can be corrected by including equation (2) in
the governing equation (25).

NUMERICAL RESULTS

Solutions were obtained for three different materials. These material
parameters were assumed to approximate the behavior of steel, aluminum, and a
composite epoxy-fiber orthotropic material. The maximum radial and tangential
stresses are shown in figure 1 as a function of w2 . The cylinder was assumed
to have an outside radius of 0.127 m (5 inches) and inside radius of 0.254 m
(10 inches). The maximum radial stress occurs approximately halfway between
the inside and outside, while a is maximum at the inside radius.
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The percent deviation of the nonlinear solutions above the linear is illus-
trated in figures 2 and 3. The increase in stress using the equations of refer-
ence 1 appear to be almost linear in every case. The radial stress increase,
using the incremental theory, is similar for both steel and aluminum and
reflects a nonlinear behavior. The increase for the composite appears to become
constant. The nonlinear tangential stress deviation increases and then tends to
decrease for both isotropic materials; however, this behavior is not demon-
strated for the composite.

In all cases the increase in stress level does not appear to be significant
for stresses in the elastic range. The analysis presented herein should be
extended to include nonlinear material behavior.
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VARIATIONAL THEOREMS FOR SUPERIMPOSED MOTIONS IN ELASTICITY,

WITH APPLICATION TO BEAMS

M. Cengiz D~kmeci
Technical University of Istanbul

SUMMARY

This study presents variational theorems for a theory of
small motions superimposed on large static deformations and
governing equations for prestressed beams on the basis of 3-D
theory of elastodynamics. First, the principle of virtual work
is modified through Friedrichs's transformation so as to describe
the initial stress problem of elastodynamics. Next, the modified
principle together with a chosen displacement field is used to
derive a set of 1-D macroscopic governing equations of pre-
stressed beams. The resulting eqtiations describe all the types
of superimposed motions in elastic beams, and they include all
the effects of transverse shear and normal strains, and the
rotatory inertia. The instability of the governing equations is
discussed briefly.

INTRODUCTION

Small motions superimposed upon large static deformations
have been tackled by a variety of investigators. And differential
as well as variational formulations have been derived for both the
so-called initial stress and initial strain problems (see, e.g.,
refs. 1-3, and references cited there). A classical variational
formulation for the initial stress problem is deduced from a
general principle of physics and has certain advantages over a
differential formulation (see, e.g., ref. 3, where the principle
of virtual work is taken as fundamental). This yields only the
stress equations of motion and the natural boundary conditions.
The remaining equations of the initial stress problem should be
introduced as constraints. The constraints, however, can be
removed through Friedrichs's transformation. This has been
illustrated by de Veubeke (ref. 4) for classical elastodynamics.

All the past efforts reveal how the static and dynamic
behavior of structures may significantly change by the presence
of initial stress or initial strain. Among those, we mention here
references 5-8 and references 9-12 on initially stressed shells
and plates, respectively. On initially stressed beams, the works
of Brunelle (ref. 13) and Sun (ref. 14) are cited. Brunelle
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derived the governing equations for a prestressed, transversely
isotropic beam via the direct integration of 3-D field equations.
Sun studied the equations for a Timoshenko beam having an initial,
in-plane compressive stress by the use of both Trefftz's and
Biot's formulations.

The purpose of this investigation is twofold. The first aim
is to modify the principle of virtual work, and then to obtain a
generalized variational, theorem which describes an arbitrary state
of initial stress. The procedure used in achieving this is
analogous to the one used in reference 4. The second aim is to
construct the governing equations of anisotropic beams under
initial stress by the use of the generalized variational theorem
together with an incremental displacement field chosen a priori.
The displacement field allows to include all the effects of
transverse shear and normal strains, and the rotatory inertia for
the prestressed thick beam in which they are significant. The
resulting equations describe all the types of superimposed
extensional, flexural~and torsional motions of thick anisotropic,
elastic beam of uniform cross section. The dynamic instability
of the prestressed beam is also discussed.

SYMBOLS

In a Euclidaen 3-space, Cartesian tensors are used, and
Einstein's summation convention is implied for all repeated Latin
(1,2,3) and'Greek (1,2) indices, unless indices are put within
parantheses.

L, A; C length and cross-sectjional area of beam; Jordan curve

which bounds A

V, S entire volume of beam and its total boundary surface

S', S" complementary subsurfaces of S, where stresses and
displacements arerespectivelyjprescribed

xi; x , x 3 a system of right-handed Cartesian convected coordi-nates; lateral coordinates and beam axis

u., uin components of displacement vector, displacement

1 1 functions of order (m,n)

p mass density

ni Vvi components of unit outward vector normal to S and C

6 ij s ij components of strain and symmetric stress tensors

0 prescribed steady temperature field
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C. iisothermal elastic stiffnesses and strain-temperature
Cijkl" Ni constants

I ffmoment of inertia of order (m,n)mn

a i= ui' ti components of acceleration and traction vectors

T¶'n stress resultants of order (m,n)
1j

Fm,n Am,n body force and acceleration resultants of order (m,n)
i i

Qm ,n pm,n effective load and external force of order (m,n)
1 1

(C), ( ) i partial differentiation with respect to time, t, and x.

(0), (*) field quantities belong to the reference state and

prescribed quantities

Cmn functions with derivatives of order up to and including
m and n with respect to space coordinates x. and time,t

FUNDAMENTAL EQUATIONS

Consider a simply connected elastic body V+S, with its
boundary S, in a 3-D Euclidean space :. The elastic body is
referred to a x.-fixed system of Cartesian convected coordinates
in this space. When this body is prestressed, we distinguish two
states of the body: its reference (or initial) and spatial (or
final) state. The reference state is considered to be self-
equilibrating following static loading in the natural (or un-
disturbed) state of the body at time, t=to. We may summarize, for
ease of quick reference, the fundamental equations (see, e.g.,
ref. 2) in the form

s?. i + p 0 f? = 0 in V (1)

n.s -to = 0 on S' u? - uO* = 0 on S" (2)
113i 1 1

s = C 6 = 1/2(u? . + u? ) in V (3)
ij ijkl 'kl 1i, 1,11

for this state. Here, p0 is the known mass density of the body
material, so the symmetric stress tensor, f? the body force
vector per ait mass in V, u? the displacement vector, n. the
unit outward vector normal to S, u ? * and t?* the prescribed1 1

displacement and traction vectors on the complementary sub-
surfaces S" and S' of S, c?. the linear strain tensor, and Cijkl
(C. = C Ck ) th eisothermal elastic stiffnesses.
ijkl jikl =Cklij i

Now, suppose that an infinitesimal (or small) motion is
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superimposed upon the reference state. For this motion, we have

the following fundamenttLl equations:

(S + so u + P 0(f - a 0 in V (4)
ij ir jr 'i i

n (s + so u - tý 0 on S' (5)
i ij ir jr

U. Uý = 0 on S" (6)

6 ij 1/2(u i1i + u i1i in V (7)

S ij C ijkl (6 kl ea kl in V (8)

U. vý = 0 & wý = 0 in V(to) (9)

in the spatial statle. In these equations, s.., u., t. and so on
1

indicate small incremental quantities superimýoseA upon those of
0 0the reference state (i.e... s.., u., t?). And a.=U. is the

acceleration vector, vý and W10.* aýe týe prescriýedldisplacement
vectors. 0 is an incremental prescribed steady temperature field
and a ij = a the strain-temperature coefficients at constant
stress. Alýo., V(to) is used to designate V at t=to.

Equations (l)-(9) describe completely the initial stress
problem of interest.

VARIATIONAL THEOREMS

To begin with, we express a principle of virtual work as the
assertation

fV(s? + s )6Y dV = fV p'(f? + f,)6udV - fV poa,6uidV
ii ij ij 1

+ fS(t? + tý)6udS (10)
1 1

in the spatial state. Here, y ij denotes the Lagrangian strain
tensor, and it is given by

Y ij = F_ ij + 1/2(u ir u jr) (11)

In equation (10), through the use of equation (11), we first carry
out the indicated variations. apply Green -Gauss integral
transformations and combine the resulting surface and volume
integrals. Next, we recall the usual arguments on incremental
field quantities (see, e.g., ref. 2). take into account equations
(1) and (2), and finally arrive at the variational equation of the

484



form:

6J =6J = 0 (12 a)

with

6Jl= fv(Sij + s? u. r) 6u dV + fV p°(fi - a )6u~dVir j,r ,

61 +rs? u. )n. - t L]6u.dS (12 b)22 fE'i lru,r)'i i i

The variations of displacements are arbitrary and independent in
this equation. Hence, equation (12) leads evidently to the stress
equations of motion (4) in V and the natural boundary conditions
(5) on S, as the appropriate Euler equations.

Variational Theorem: Let V+S denote a regular, finite region
of space (see, e.g., ref. 15) in w, with its boundary S, and define
the functional J whose the first variation is given by equation
(12). Then, of all the admissible displacement states u.EC1 2 , if
and only if, the one which satisfies the stress equation• ot motion
(4) and the natural boundary conditions (5) as the appropriate
Euler equations, renders 6J = 0.

This is a one-field variational theorem in which equations (6)
-(9) of the initial stress problem remain to be satisfied as
constraints.

To include the rest of equations of the initial stress problem
in the variational formulation, we introduce dislocation potentials
and use Friedrichs's transformation, and we closely follow de
Veubeke (ref. 4). Thus, we obtain the following theorem.

Generalized Variational Theorem: Let V+S denote a regular,
finite region of space in E, with its boundary S (S'fS"=0 and
S'uS"=S), and define the functional I whose first variation is
given by

= 61.. + 6J (13 a)

with

611 = fS' [(s.i + s? u. )n. - tý16u.dS
"" ir j,r 1 3

+ fS11(ui - uý)6t dS (13 b)

6122 = fV [sij - Cijkl(ckl - Bakl)]6cijdV (13 c)

61 [ _ ij - 1/2(u ,j + uji )]6s ijdV (13 d)

Then, of all the admissible states of uis0l 2 , EijeC 0 0 , t.iC -and

20 1 00

1- 
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s. .sC , if and only if, those which satisfy the stress equations
o mo;1on (4) in V, the natural boundary conditions (5) and (6)
for displacements and tractions on S" and S', the strain-
displacement relations (7) in V, and the constitutive equations (8)
in V, as the appropriate Euler equations, render 6I=0.

In the generalized variational equation (13), the incremental
field quantities (s.., u., t.i and c..) are varied independently.
And this is a four-ýieldlvariati~nai 3 theorem. The admissible
states are not required to meet any of the fundamental equations of
the initial stress problem but the initial conditions (9) only.

BEAMS UNDER INITIAL STRESS

Geometry and Kinematics

A straight elastic beam is embedded in the space •. The beam
is of uniform cross section, A, and it occupies a regular, finite
region of space V with its boundary S in E. The total surface S
consists of two right and left faces, A and A1 , and a cylindrical
lateral surface S . The beam is referred to t1e x.-system of
Cartesian convected coordinates located at the ceniroid of A The
x -axis is chosen to be the beam axis, and the x -axes indicate
the principal axes of A which is bounded by a Jordan curve C. The
beam is under an initial stress field in the reference state.

The incremental displacements of the prestressed elastic beam
are taken of the form:

M=l unm,n)
ui(xjt) = Z [x1 x nukn1]mn=0 2 (

Here, the uý mn) are functions of x and time, t, only. These
terms readily accommodate low-frequhncy extensional, flexural and
torsional superimposed motions. However, it should be kept in
mind that, in the case of torsion, equation (14) can represent
only the displacements of beams of elliptic and circular cross-
sections, and for all other sections, more terms should be retained
in the expansion. The displacement field (14) is like the one
Mindlin (ref. 16) used in his recent derivation of the governing
equations for a non-initially stressed elastic bar.

Stress and Load Resultants

We define the stress resultants of order (m,n):

T (mn) mA n s .dA (15 a)
Tj .1X 2 sij
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This represents the weighted, averaged values of stress tensor
over a cross section of the prestressed beam in the reference
state.

In addition, we introduce the body force, acceleration and
load resultants, and the moment of inertia of order (m,n):

F(m,n) = mxn f~dA, T*(m,n) xmxn tndA
1 A 2 11 A 12 1

A A(m,n) - M•l un.p,q)

Imn =A x1x2 dApq m+p,n+q 1

P(m'n)" , po(mn)] = xC X 2 •mvn [s.i, soi]ds

R(mn) = (pp(m+p-l,n+q) + qPo(m+pn+q-l))u(pq)
p,q=O 1

+ o(m+p,n+q)u(P,q)3 ,3 ]

+ ~~ 0 (m+p-,n+q) ,

N(m,n) -M=l o(m+p-2,n+q) (p+qo(m+p-l~n+ql)N [mpTII + (np+mq)T1
Pq=o

+ qnT (m+p,n+q-1) + TO (m+p-l,n+q)
S22 31,3

+ qTO(m+p,n+q-) ]u(P,q) + To(m+p,n+q)u(P,q)
32,3 1 33 i,33

+[(P+m (m+p-l,n+q) +T (m+p n+q-l)

13 23

+ To(m+p,n+q-1) ]}(p3,)
33,3 1,3

N0 (m,n) M= Il
Mi [I(m+pl~n+q) (om+pn+q-1))u(p,q)

3i ~p,q=0 13

+ To(m+p,n+q)u(P,q) ]
33 1,3 (15 b)

Prestressed Beam Equations - Instability

Now, we shall derive the prestressed beam equations by the
use of the generalized variational theorem (13) together with the
incremental displacement field (14). First, upon substituting
the expansion (14) into equation (13 a), we find the variational
equation (16). In this equation, the variations 6u Mn are
arbitrary and independent for any choice of m(=0,1)'and n(=0,l),
and hence it evidently leads to the macroscopic equations of
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motion (17) as follows:

L M=l (mn) u(m'n)dx 0, mn,1()f I Ui 6 i dx3 0 =nOl(6
0 m,n=0

u~mn) (m,n) _m(m-l,n) _n(m~nl +pm,n) +0mn

= T3i,3 ±i 2i 1 Qi

+O(Fm,n) - A (m,n)) = 0, m,n=0,1 (17)

Here, Qi~~n is the effective initial load given by

q?(m,n) = N?(m,n) + R? (m,n) (18)

Similarly, we evaluate the variational equation (13 b) and
obtain the natural displacement and traction boundary conditions
in the form

u(m,n) _ u, (m,n) = 0, m,n=0 1 on SI
ui 1 1 (19)

Tý (m'n) + n3(T (m'n) +NO (m'n)) = 0, m,n=0 1 on A and AI
1 3-3i +3i '' r

Here, S'=A ruAI1 and S"=SI, and n 3= +1 for A r and n 3=-i1 for AI.'

Upon using of equations (13 c) and (13 d) together with (14),
we have the strain distribution:

C . . = M 1lX m n . .m n (x 3 t ) (20 a )
j m, n=O,l 1 2 j 3-

with

,ým'n) = 1/2 [u~m'n) + u(m'n)

1j 1,j J ,1

+ M1( u(m+l n) + .6uým+l,n))
+ m~)(li j 'j + 13

+ nl( u~m'n+l) + .6u~m'n+l)) (20 b)+ n~)(2i i + 2j 1

and the macroscopic constitutive equations:

(n)=M=I (P'q) -kl(p'q)) (1
T =j C jk I m+p,n+q (F-kla l0(1T• n) Cijklp,q=l

where we take the temperature increment of the form:
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=(x =N mn G (m,n) (x22)
m.,n=O

Lastly, the initial conditions, based on equations (9) and
(14),

u(mn) - vý(m'n) = 0 J(m,n) - w,(m,n) = 0 in L(t 0 ) (23)
1 1 1 O

complete the beam equations (cf., ref. 17, where non-initially
stressed beams are treated) under an arbitrary state of initial
stress field.

The beam equations of equilibrium may be derived similarly
on the basis of equations (l)-(3); they are not written out here
in order to conserve space.

To examine the stability of the prestressed beam equations,
we first consider the beam with a set of initial forces X. Next,
we replace X by a prescribed set X*. And, as usual, we arrive at
a system of linear homogeneous differential equations which
describes the instability problem under consideration. The sets
are defined by

X = (TO!m'n) in L, FO(mn) in L, T?(mn) on A)ii 1 1

=* X(TO(mn) in L, F* (m,n) in L, T.* (m,n) on A)ij i 1

where X is a monotonically increasing factor, and whenever it
reaches certain values the equilibrating reference configuration
becomes unstable. The behavior of the eigenvalues of this factor
is to be investigated in each particular case of interest. Some
examples of instability will be reported elsewhere.
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RESPONSE OF LONG, FLEXIBLE CANTILEVER BEAMS

TO APPLIED ROOT MOTIONS

Robert W. Fralich
NASA Langley Research Center

SUMMARY

Results are presented for an analysis of the response of long, flexible
cantilever beams to applied root rotational accelerations. Maximum values of
deformation, slope, bending moment, and shear are found as a function of
magnitude and duration of acceleration input. Effects of tip mass and its
eccentricity and rotatory inertia on the response are also investigated.
It is shown that flexible beams can withstand large root accelerations pro-
vided the period of applied acceleration can be kept small relative to the
beam fundamental period.

INTRODUCTION

In the design of large space structures, it is necessary to understand
the dynamic response of flexible, low-frequency structures. A typical design
problem is shown in figure 1, where a 100-meter beam is deployed from the
space shuttle orbiter for a proposed molecular vacuum facility. The design of
a lightweight boom requires a knowledge of the motion caused by input accel-
erations produced by control forces applied at the shuttle orbiter. The dura-
tion of these control forces is a small fraction of the first natural period
of the boom. The purpose of this paper is to present results of an analysis
of lightweight flexible booms to short-duration acceleration impulses and to
find the permissible values of these input accelerations. Effects of tip
mass magnitude, eccentricity, and rotatory inertia are included in the analysis.

DESCRIPTION OF ANALYSIS

The configuration analyzed in this paper is the cantilever beam shown in
figure 2. The beam of length L, depth D, stiffness EI, and mass per unit
length p has a tip mass R with a rotatory inertia In and an eccentricity
B. The analysis considers a constant rotational input acceleration A which
is applied for a time T and is then removed. The duration of input TO
varies over the range from an impulsive input (To - 0) to a step input
( -03 )" A nondimensional measure of the duration of input acceleration is
given by the ratio T 0 /T where T is the period of the first natural fre-
quency of the cantilever beam. In the present study, the region with low
values of T 0/T is of main interest.
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Simple beam theory is used to obtain the differential equation of motion

El 34y(x, t) +pF • 2 Yt(x,) +Xd 20(t) -o 1

3x 4  + t2  + dt2 0 ()

where 6(t) is the rigid body rotation and Y(X,t) is the elastic deformation
of the rotating beam. The deflection Y(X,t) satisfies the boundary conditions

Y(0,t) = 0

3Y(0,t) =0
Dx

D(,t 0 3 Y(L,t) 2 3 Y(L,t) 0
- E1 -3(Lt + M IB + L)- d2 + •2(')+ B 3yLt)-]

aX3 dt Dt2 2-

(2)

El 2Y(Lt) BM B L) d 2 + 2y(Lt) +B 3y(Lt
DX2 dt2 + t2 + B (t 2

+ IMLd--- + =Y(Lt) 0

and the initial conditions

Y(X,0) = 0

(3)
Y(X,M0) = 0 J

3t

The rigid body rotation is given by

1 2
0= At for 0 < t < T

and (4)

0= AT0 (t - 'T0 ) for t > TO

In the analysis the elastic deformation Y(X,t) is given by

CO

Y(X,t) = Y an(t) n(X) (5)
n=l

where pn(X) are the beam vibration modes for the cantilever beam and an(t)
are generalized coordinates. Results are obtained for elastic beam deflection

Y(X~), sope Y(X,t)
Y(Xt), slope 3X , bending moment M(X,t), and shear resultant Q(X,t)
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Modal equations for these responses were programed on a digital computer and
the maximum value of each was found at several stations along the beam.

RESULTS AND DISCUSSION

The number of modes required for convergence is indicated in figure 3 for
a beam without a tip mass subjected to input rotational accelerations with a
large enough variation of input durations to include all possible types of
responses. Although not shown, similar curves have been established for other
tip mass configurations. These curves give the maximum values of nondimen-
sional response parameters for the deflection YT and slope ýYT/OX at the
beam tip and for bending moment M0 and shear resultant Q0 at the beam root.
Accurate calculations of these response parameters are obtained by using only
one mode for tip deflection, two modes for tip slope, and five modes for root
bending moment and shear resultant. A six-mode solution is used herein as a
completely converged standard of comparison.

The curves of figure 3, showing the effects of duration of acceleration
input, can be divided into two regions of response types. For short-duration
inputs (T 0 /T < 0.5) the maximum responses always occur after the input root
acceleration has been removed. For long-duration inputs (T0 /T > 0.5) the
maximum responses always occur while the input acceleration is being applied
and approach the values for a step input (T 0 /T - -) which have the values of
two times the values for the quasi-static solution for rigid body inertia
loading. The nearly horizontal curves for T0 /T > 0.5 show that in this
region the maximum values of beam responses can be calculated by use of the
simple quasi-static solution.

When the nondimensional parameters of figure 3 are used, the results for
nearly impulsive input acceleration (T 0 /T ÷ 0) are all compressed near the
origin. Inputs in this region are of particular interest since typical control
inputs are for short intervals of time while space booms have long periods.
To overcome this difficulty, the results of figure 3 are repeated in figure 4
by using a different set of nondimensional parameters. These parameters have
finite nonzero values for the pure impulse and are in agreement with calcu-
lated values from reference 1, which considers the instantaneous arrest of a
rotating cantilever beam. These response parameters that have input accelera-
tion impulse (T0 A) in their nondimensionalizations, for short-duration inputs
(T0 /T < 0.5), do not have the large variation with T0 /T that is obtained by
using the response parameters of figure 3. For this reason, the nondimensional
parameters of figure 4 are used throughout the remainder of the paper.

Effect of tip mass on maximum response is shown in figure 5 for a pure
impulsive input (T0 /T ÷ 0) and for a short-duration input (T 0 /T = 0.1). Curves
are shown for the nondimensional parameters for elastic tip deflection and
root bending moment. For short duration of input acceleration, the effect of
duration has very little effect on the elastic tip deflection curve but has
some effect on the root bending-moment curve. Note that effects of tip mass
are included not only in the tip mass parameter (M/pL) but also in the period
T. Even though the nondimensional response is shown to decrease with tip mass,
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the physical quantities increase as expected. For example, for a tip mass
equal to the- beam mass, the root bending moment increases 75 percent and the
tip deflection 100 percent.

Effects of tip mass eccentricity and rotatory inertia are shown in
figure 6for a pure impulse (T 0 /T - 0) and for a short duration of input
(T 0 /T = 0.1). Here nondimensional tip deflection and root bending moment are
shown as functions of rotatory inertia IM/ML 2 for two values of eccentricity
B/L which are chosen as representative extreme values. Effects of rotatory
inertia and eccentricity also appear in two parts of this figure; first, in
the parameters IM/ML 2 and B/L and, second, in the period T which is used
in nondimensionalizing the response parameters. Again, for short-duration
inputs, the elastic tip deflection parameter is only slightly affected by
duration of input but the root bending-moment parameter decreases appreciably
with an increase in T0 /T.

When a limiting design or maximum value is assigned to any of the calcu-
lated values of response, curves can be obtained to give maximum permissible
input acceleration as a function of structural parameters. For example, if
limiting values are assigned to the maximum bending strain 6 at the root of
a cantilever with a symmetrical cross section, the curves of figure 7 are
obtained which give permissible nondimensional input acceleration TT A as a
function of span to depth L/D. The c = 0.003 and 0.005 curves bound values
of limiting bending strain that are appropriate for most isotropic and compos-
ite materials while the 6 = 0.001 curve represents a practical value of
limiting bending strain that has been reduced to take into account effects such
as buckling. The curves, shown for no tip mass, show that for given values of
L/D and 6, a slightly higher value of impulse T A is permitted if the0
impulse is applied over a longer duration of time T0 .

Sample curves with physical units are given in figure 8 for determining
permissible input acceleration A. These curves are shown for a beam with no
tip mass and for the reduced limiting strain condition (C = 0.001). The curves
show the variation of permissible input rotational acceleration with the lowest
natural frequency (I/T) and the span-to-depth ratio L/D for two values of
input duration T /T. The T /T = 0.5 value represents the most severe case
where the response approaches that of the step input and the beam behavior can
be estimated from a simple quasi-static solution. The T0 /T = 0.001 value
represents a nearly impulsive input. As the duration of input decreases, the
permissible magnitude of input rotational acceleration increases. As illus-
trated in figure 8, a hundred-fold increase in permissible acceleration can be
achieved by applying very short-duration inputs.

CONCLUDING REMARKS

A modal solution has been obtained to study the response of long, flexible
cantilever beams to applied values of root rotational acceleration. Effects of
tip mass with various eccentricities and rotatory inertias have been included.
Results were obtained for duration of input that cover the range from near-
impulsive to the step function. A set of nondimensional parameters has been
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identified that facilitates looking at the response for the near-impulsive type
of input accelerations. When the duration of input is more than half the
period of the first natural frequency of the beam, the maximum response is
nearly equal to that of the step-function input and is found to be twice the
response given by simple quasi-static analysis based on rigid body inertia
loading. Examples are included of application of these results to the problem
of determining maximum input acceleration so that design values of maximum
strain are not exceeded. These results show that large flexible booms can
experience high root rotational accelerations without inducing large strains
provided the duration of controlling forces are kept to a small fraction of
the period of the first natural frequency.
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Figure 1. Long, flexible boom for molecular vacuum facility.

D
p, El BMA•

LB
Y

BEAM CONFIGURATION

A

COORD INATES

0 T

t, sec
INPUT ACCELERATION

Figure 2. Flexible cantilever beam subjected to input rotational acceleration.
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Adjutant

OPTIMAL DESIGN AGAINST COLLAPSE AFTER BUCKLING

E. F. Masur
University of Illinois at Chicago Circle

"SUMMARY

After buckling, statically indeterminate trusses, beams, and other
"strictly symmetric" structures may collapse under loads which reach limiting
magnitudes. The current paper discusses optimal design for prescribed values
of these collapse loads.

INTRODUCTION

The principles and techniques of optimally designing structural elements
against buckling have been widely investigated. For example, there exists an
extensive literature on the problem of finding the least weight design for a
column of prescribed Euler buckling strength (see, for example, ref. 1,2,3),
and two recent publications (ref. 4,S) deal with the analogous problem of find-
ing the lightest beam to resist lateral buckling under prescribed loads. The
common feature of these problems is the fact that the structures considered are
statically determinate in the sense that the prebuckling stresses themselves
are independent of the design.

if the structure is indeterminate, and if the prebuckling stresses them-
selves are therefore affected by design changes, the problem becomes vastly
more complicated and no general optimality principles appear to have been
developed. On the other hand, it is likely that in cases of this type the
buckling load itself does not represent an important design criterion. Some
structures buckle under decreasing loads and are therefore imperfection-
sensitive. Others may buckle under increasing loads, and their actual strength
is again governed by factors other than the critical buckling load.

It has been shown that certain "strictly symmetric" types of structures
necessarily buckle under increasing loads, and that these loads often approach
limiting values as buckling deformations increase indefinitely. Examples of
structures of this kind are statically indeterminate trusses (ref. 6) or beams
buckling laterally (ref. 7), and recent numerical (ref. 8,9) and experimental
(ref. 10) results have confirmed the general theory (ref. 11). It may there-
fore be realistic to study the optimal design of such structures as their
collapse strength, rather than their buckling strength, is prescribed. The
object of this paper is to introduce a general discussion of this problem and
to indicate a method of solution.
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POSTBUCKLING MODEL

The postbuckling behavior of strictly symmetric structures has been
described in total generality in reference 11. It can easily be visualized
by means of a simple model consisting of a pin-jointed truss of n (say,
n = 2) degrees of indeterminacy. If the external loads are increased by
increasing a common load parameter A, then the "critical" load value is
reached when the compressive force in one of the bars (say, bar 1) reaches
the Euler value for that bar. Nevertheless, the load-carrying capacity of
the truss is obviously not yet exhausted. While member 1 buckles under
sensibly constant compressive force, Atcontinues to increase until member 2
similarly starts to buckle. Collapse occurs when member 3 also buckles, and
X = A then remains constant.

c

This simple process can be visualized within a format that is applicable
to all strictly symmetric structures. Let S, the vector of all bar forces,
be of the form

S = XS + a , (1)
- -o r ~r

in which, for simplicity, the self-equilibrated bar force systems S r are
selected so as to satisfy the orthonormality condition

Si Si P.
r s 1 S S = 6 (r,s=1,2)
A.E. -r Ss rsi 1 1

where the summation extends over all the bars and ki, Ai, Ei represent,
respectively, the length, cross-sectional area, and Young's modulus of the
ith bar. Moreover, if So is the actual force system in the unbuckled
structure, (ar = 0 ), then

S 0 S = 0 (r=1,2) (3)

In the absence of any limitations on the tensile strength of any member,
the condition of "statical admissibility" is given by

Si _> - Ni (N1 >0 = Euler force), (4)

which, in view of equation (1), becomes

i i i
rSr > -N -AXS (i=1, 2, ...n) (5)r r = 0

For given value of A equations (5) define a statically admissible region in
the ar space, whose convex boundary consists of hyperplanes whose normal
vectors are proportional to S1 (fig. 1). The region so defined need not be
closed. For definiteness we assume A > 0 and S' <0 (i =0 ,2,3,....p:n); in

that case the region "shrinks" for increasing values of A.
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For the sake of brevity we rule out the possibility of multiple buckling
modes; then the critical value X =X 1  is reached when

X Slo = - N X i i > -N (i=2,3,...,n) (6)

As bar 1 buckles under constant compressive Euler force the first (i= 1) of
equations (5), in view of equation (6), becomes

sI =
a r = - (X - X )S (7)

At the same time the changes in the bar chord lengths are given by
S11

6 S k1- 6'
1 A E 1

'1 (8)11

6 S 1 (i= 2,3,...,n)

i A.E.
1 1

in which 61.>0 represents the nonlinear effect of the curvature. Hence

S S 6. = S S - s1 6 = 0 (r= 1,2) (9)
r 1 -r - r6

or, with equations (1), (2), and (3),

S1 ,
ar = r 61 (r= 1,2) (10)

Finally, when equation (10) is substituted into equation (7),

Z(Si)2
-i r 1 6> (11)

S1
0

confirming, once again, that strictly symmetric structures have stable points
of bifurcation.

For X <A1  the origin 0 of the coordinate system in figure 1 is in
the statically admissible region and therefore represents the actual stress
point. At bifurcation (X = 11) the hyperplane B1 passes through the origin
and, for increasing values of X, the origin moves outside of the statically
admissible region, while the stress point P moves with B1 . According to
equation (10) the vector OP is parallel to the normal to B1  and, because
of the convexity of the stable region, P is therefore closer to 0 than any
other statically admissible point.
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After bar 2 also buckles, point P lies on the intersection of two
hyperplanes, and

a= S1 6 + S 2  
. (12)mr r I r 6

Finally, collapse is reached, for A =Xc, when the statically admissible
region has shrunk to the point Pc representing the intersection of three
hyperplanes. In that case the constant values of ar are given by

c = 6 + S261 + S36 (r=l ,2) (13)
r r 1 r2 r 3

and as collapse proceeds according to

6 c C (W+c) , (14)
1 1

the collapse mechanism satisfies

I c 2 c 3 cr 61 +r 62 + r 63 = 0 (r= 1,2) (15)

We also note that, in general, this mode as well as the value of Xc is
independent of initial imperfections.

OPTIMALITY

For the more general case we may identify the major state of stress by
means of

a =a 0 + a a (16) S~o r-~r

The equations of compatibility are given by

T 2 ) = 0 (r= 1,2,...,n) (17)

in which C is the compliance density with respect to a, k2  is the
quadratic contribution to the major strain associated with the buckling mode
v, and the notation implies an integral or a summation over the entire
structure.

The condition of equilibrium is given in variational form by

T(v) Kk(6v) T z 1 (Y 6Y) = 0 (18)
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where k is the linear buckling strain tensor and K the stiffness density
with respect to k. We note that both K and C are, in general, functions
of the design variable h.

For optimality we vary the design by replacing h by h+h, subject to
the condition of constant volume

dA*
V-- dA•h= 0. (19)

Since the load is prescribed it foll6ws that X =0; nevertheless, the major
stress system (identified by ar) and the buckling mode v may change.
Variation of equations (17) and (18) then leads to

r Cah + Ca a z (v) 0 (r= 1,2,...,n) (20)

LrdC -. - _s - 11 20

k(v) K k(6v) - o l T 6v) = sTslk (v 6v)

[T dK - A2dA

- !(v) ~--k(6 v) - dh (21)

in which A2 has been introduced as Lagrangian multiplier to account for
equation (19). Equation (18) represents a homogeneous eigenvalue problem, and
equation (21) has therefore no solution unless the condition of integrability

T k T (v) k dk(v) - A2 dA]h 0 (22)
s as P2 _- dh-- dhv

is satisfied. We note that equations (20) and (22) are similar to the equa-
tions derived for the initial buckling case in reference 4, except for the
last term in equation (20) representing the contribution of the postbuckling
condition.

Letting once again

v = Wv AA = wi (W (23)
- -C c

and assuming collapse under finite load and stress conditions we obtain

Ta (vc) = 0 (r= 1,2 .... . n) (24)
-r -2 -c

kT (vc) k(6v) - = 0 (25)

T dK 2 dA
k (v )- k((v) = d h (26)

c dh -5-cd
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of which the first two equations represent the collapse condition, and the
last constitutes the condition of optimality. It is noted that once again
this optimality condition requires constant strain energy density in the
design fibers. It is also noted that for collapse (in contrast to initial
buckling) the direct effect of a design change on the collapse mode via the
compatibility conditions has disappeared. In other words, we see once again
a parallel behavior pattern between collapse through buckling and collapse
through perfect plasticity.

EXAMPLE

As an example to illustrate the theory, we consider a beam of length k
which is fixed in its own major plane at the right end and subjected to a
bending moment X at the simply supported left end. Collapse occurs when

"c c -_3x + x (27)

while the equations of equilibrium (25) assume the form

K uc'- c =0 (K 2 )' +cY U" = 0 (0_<x_< (28)
1lc c c 2c cc _

where u and ý represent the lateral displacement and rotation, respec-
tively, with associated bending and torsional stiffnesses K1  and K2 . In
the development of equations (28), it is assumed that u= u" = =0 at both
ends and that the effect of warping can be neglected. In terms of B alone
equations (28) reduce to

2
a

S, + = 0 (0 < x < Z) (29)
2c K 1c

The collapse condition equation (24) becomes

k z
u" c dx =f #1 dx = 0 (30)

0 0 1

while the optimality criterion equation (26) assumes the form

dK I/(a\ dKdh I c2 2 - 2 A 2 dA
1h K d c cdh (0x ) . (31)

For the specific case of a thin rectangular beam, in which K1 =b 3h/12,
K2 =b 3 h/3, and A=bh, and in view of equation (29), equation (31) can be
written in the form
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h = b 2  2 (h•' (32)
3A cc

which lends itself well to an iterative solution scheme. It is also
interesting to note that equation (32) is satisfied for constant value of h
provided ý = sin Trx/k; this confirms the curious conclusion arrived at re-
cently by Popelar (ref. 4) that the prismatic design represents an optimum
for simply supported beams under constant bending moment.

Numerical results covering equations (29), (30) and (32) for the case
under consideration are currently being developed. Because of the variation
in the major bending moment, it is expected that in this case the prismatic
beam is not optimum, and that optimal design for collapse may lead to a
noticeable reduction in weight.
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OPTIMUM VIBRATING BEAMS WITH STRESS AND DEFLECTION CONSTRAINTS

Manohar P. Kamat

Virginia Polytechnic Institute and State University

SUMMARY

The fundamental frequency of vibration of an Euler-Bernoulli or a Timo-

shenko beam of a specified constant volume is maximized subject to the con-

straint that under a prescribed loading the maximum stress or maximum deflec-

tion at any point along the beam axis will not exceed a specified value. In

contrast with the inequality constraint which controls the minimum cross-

section, the present inequality constraints lead to more meaningful designs.

The inequality constraint on stresses is as easily implemented as the minimum

cross-section constraint but the inequality constraint on deflection uses a

treatment which is an extension of the matrix partitioning technique of pre-

scribing displacements in finite-element analysis.

INTRODUCTI ON

The problem of maximizing the fundamental frequency of vibration of beams

of a fixed, prescribed volume and likewise its dual problem have been investi-

gated by a great many investigators (see reference 1). It appears that no

consensus has been reached however, on the existence of non-trivial solutions

for beams with certain types of boundary conditions. While the numerical

experiments do strongly emphasize the existence of such solutions (see refs.

2 and 3), mathematical proofs have been constructed (see ref. 4) to prove

otherwise. This situation is rather unique since more often than not it is

the dismal failure of the numerical techniques in obtaining a solution) which

is only presumed to exist, that calls upon mathematics to establish its exis-

tence or non-existence.

The difficulty stems from singularities which result from vanishing stiff-

ness at some points along the beam axis. Although at such points the curvature

W, assumes an infinite value the products I(x)w,xx and I(x)w,2x are nonethe-
less finite at such points. Furthermore, the function I(x)w,2x is required to

be integrable over the length of the beam. Fallacies of the mathematical

proofs, if any, could well result from a failure to take proper account of

these properties for the functions I(x) and w(x).

Finite-element solutions of reference 3, which incidently emphasize

existence even in the absence of any inequality constraints appear to have

very limited practical value because the resulting designs are far from being

useful as load-carrying members. Controlling the minimum cross section of the

beam does not appear to be the answer. The optimized beam must sustain a given

loading, presumably the worst loading, without exceeding a prescribed level of
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stress or a prescribed value for the maximum deflection. In general, the
cross section with the least area is not necessarily the critical section in
terms of stress nor are the constraints on deflections met in a rational and
an expeditious manner simply by controlling the minimum cross-sectional area
of the beam.

To generate more practical designs) it is deemed appropriate to require
that the optimum beam shall not (i) be stressed to more than a specified multi-
ple of the maximum stress or (ii) deflect more than a specified multiple of
the maximum deflection of the corresponding uniform beam of the same volume.
The present formulation allows the specification of an arbitrary vector of
stresses or of deflections, with those corresponding to the uniform beam case
being specializations of the arbitrarily specified vectors.

PROBLEM FORMULATION

The formulation is restricted to discretized finite-element models of
beams. Since the case of an Euler-Bernoulli beam can be obtained as a special
case of a Timoshenko beam, the latter will be implied in the formulation.

The approach is exactly similar to the one used in ref. 3. It consists
of maximizing the minimum value of the Rayleigh quotient, w2, for a Timoshenko
beam subject to the equality and the inequality constraints. For a discreti-
zed finite-element model

W2 = [q][K]{q}

[q][M]{q} (1)

where [K] and [M] ares respectively the assembled stiffness and mass matrices
derived on the basis of a uniform cross-section beam element and {q} is the
mode shape of free vibration. In the case of a Timoshenko beam the stiffness
matrix accounts for the effects of shear deformations and the mass matrix
accounts for the effects of rotary inertia. Furthermore, for a general case,
the stiffness matrix may include the effect of a specified distribution of
axial loading and elastic foundation and likewise the mass matrix may include
the effects of a specified distribution of non-structural mass.

The optimization is to be carried out subject to the equality constraint
of a fixed, given total volume V which for a beam with elements each of
length Zi and cross-sectional area Ai, i=l,2...mjreduces to

m
Z A. Z.=V (2)

i=l

The required relation between the cross-sectional area and the moment of inertia
is provided by a consideration of cross-sectional shapes for which

I. = pA n (3)
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p>O and n being appropriate constants depending upon the type of cross section.

Stress Constraint

It is required that for a beam satisfying eqs. (1) through (3), the Ray-
leigh quotient of eq. (1) be maximized subject to the constraint that

{a} < k2 {a} (4)

where {a} is the vector of nodal stresses for the optimum beam under a pre-
scribed loading and {a} is the vector of prescribed stresses. Since stress at
an internal node is discontinuous, the vectors {cY} and {a} are assumed to be of
size 2m by one.

A beam element with a cubic transverse displacement field has a linear
variation of bending moment within an element. Thus, the maximum bending
moment within an element can occur only at the two nodes and hence~as in
eq. (4), only the nodal stresses need be monitored for the purposes of imple-
menting the stress constraints.

The stress ali due to a bending moment Mli at node 1 of element i is

Oh IM1 icl (5)J~i I.

For cross-sections specified by eq. (3), it can be easily verified that

c. I. n-l
01 = I- )2n (6)

c. I .1 1

where quantities with superscript 0 pertain to the uniform beam of total
volume V. Equations (5) and (6) together imply that

n+l} (7)

(I)2n

Accordingly, eq. (4) can be written as

M } <k 2 {o} (8)n+l --

(I)2n

The inequality constraint, eq. (8),can be transformed into an equivalent
equality constraint by Valentine's principle. An auxiliary functional which
is the original functional of eq. (1) modified by the two equality constraints
with the aid of undetermined Lagrange multipliers is constructed. In terms of
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non-dimensional quantities this functional can be shown to be

[q*][K*]{q*} m
= [q*][M*]{q*}- i=

m Mi

i=l <1i[ n+l) - a(ci)+ * (9)
(I*)2n

i

2i -
2  2

+ X*( H) (CF*)+ >*]~2i n+l CF 2i 2i,

(I*)2n
i

where

(W2),= square of the non-dimensional fundamental frequency

_ y A0 Z4w2

g EI 0

A*= non-dimensional cross-sectional area

A Ak (10)
A 0 v

I* = non-dimensional cross-sectional moment of inertia

I

M* =non-dimensional bending moment

Mz

EI
0

a.* non-dimensional stress
±

_1

Ec0

512



whr • 0 0 0

where k, A , I and c are respectively the length, the cross-sectional area,
moment of inertia and distance of the extreme fiber from the centroidal axis
of the cross-section of the equivalent uniform beam of volume V. ý* and ý*
are the non-dimensional auxiliary functions of E=x/k, which trans-

form the inequality constraints into equivalent equality constraints.

The requirement of the vanishing of the variation of (w2)* with respect
to {q*}, X and ,* yields the necessary optimality conditions. Based on the
work of ref. 3,these conditions can be shown to be the following:

In those portions of the beam where the inequality constraint is not
effectivethe conditions

(nU*i + U* - T* - nT*i)/V' = constant, i=l,2...m (11)
bi si ti ri i

hold true; while in other portions the stress constraint is effective. In
eq. (11) U•* and U*. denote non-dimensional strain energies due to pure
bending an shear sdeformations, respectively; T*. and T*. denote non-dimen-. .ti1
sional kinetic energy densities due to translational anE rotary inertia,
respectively and V. denotes the volume of the i-th element.

1

Implementation of the stress inequality constraint in the optimization
procedure proceeds in a manner very similar to the one used for the minimum
cross-section inequality constraint of ref. 3. The moments of inertia of
elements leading to improved designs are determined by recurrence relations
designed to force the specific energy density of eq. (11) to be a constant
for all elements assuming initially that none of the elements are governed
by any inequality constraint. (See reference 3 for details of these recurrence
relations.) In each iteration, however, determining if the stress constraint
is effective or not requires a complete static stress analysis of the beam
to obtain the vector of nodal stresses. The cross-sectional inertias of
those elements which violate the constraint are then set equal to

M* 2n M* 2n
[( li )n+l (-2i )n+l]I• =max[ ) , (.. ) ](12)

li 2i

The cross-sectional inertias of the other elements which do not violate the
inequality constraint are adjusted to meet the volume equality constraint,
eq. (2).

Although for statically determinate beams eq. (12) guarantees the
satisfaction of the stress constraint in any given iteration of the frequency
optimization the same is not true of statically indeterminate beams. For the
latter, one could conceivably iterate within the static stress analysis to
determine the appropriate element stiffnesses so as to satisfy the stress
constraints to within a desired tolerance. However, in view of the iterative
nature of the frequency optimization proceduresuch additional effort is not
warranted especially if stiffness changes in successive iterations are kept
small enough.
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In view of the equality constraint, eq. (2), it is obvious that the
maximum number of elements which may be governed by this constraint is at
most m-l for a consistent constrained optimization.

Deflection Constraint

In this case it is required that for a beam satisfying eqs. (1) through
(3), the Rayleigh quotient of eq. (1) be maximized subject to the constraint
that

{r} < 2 {r} (13)

where {r} is the vector of nodal displacements for the optimum beam under a
prescribed loading and {r} is the vector of prescribed displacements. Both
vectors are of size (2m+2) by one. As with the stress constraint the maximum
number of elements whose cross-sectional moment of inertia can be arbitrarily
specified is at most m-l. Hence, under the limiting case of a strict equality
in eq. (13), the number of equations which imply prescribed displacements can-
not exceed m-i for a consistent constrained optimization.

In this case, the auxiliary functional in terms of non-dimensional quan-
tities is

(W2),, = [q*][K*]{q*} m
[- ': ( Z A* *i - 1)

[q*][M*]{q*} 0 i=l i i

l 2_22 (14)

E X*[(r*) 2k (r)2 2
i+l

where

r= r./Z for translational degree of freedofnI i (15)

= r. for rotational degree of freedomS1

Proceeding as before the optimality conditions can be shown to be eq. (11) in
those portions of the beam for which the deflection constraint is not effective;
while in other portions the deflection constraint is effective. Since the
transverse displacement field varies cubically over the length of the element,
satisfaction of the constraint at the two nodes of the element does not
guarantee that the constraint is not violated in the interior, especially if
large changes in curvatures take place within the element. This is circumvented
by refining the discretization sufficiently.

Strictly speaking, the implementation of the stress constraint is, in
general, an implicit, nonlinear phenomenon which is rendered explicit by the use
of a very simple and approximate relation, eq. (12). No such approximations
are necessary for the implementation of deflection constraints. The problem
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in this case reduces to determing element stiffnesses which guarantee
prescribed displacements under prescribed loads. Let [K*] denote the assembled
matrix of the supported beam and let {r*} denote those nodal displacements which
violate the constraints, eq.(13). The matrix [K*] and the corresponding dis-
placement and load vectors are accordingly partitioned as

K*• K* r* Q*

K* K* r* (16)

L

where {Q*} and {Q*} are the vectors of externally prescribed loads with the
latter being associated with those degrees of freedom which violate the
displacement constraints and are accordingly prescribed as being equal to
{r-*}. Equations (16) yield

[K* ]{r*}+[K* 1{r*}= {Q*} (17 a)

[K* ]{r*}+[K* ]{r*}= {Q*} (17 b)

Simultaneous solution of equations (17 a) and (17 b) yields

[K* 1{r*}={Q*}-[K* ][K* I ({Q*}-[K* ]{r*}) = {F*} (18)

If the elements of the matrix [K* ] are assumed to be functions of moments of
inertia of as many beam elements as the number of prescribed displacements
{r*} then the system of equations (18) can be uniquely solved for the unknown
moments of inertia which guarantee the satisfaction of the deflection constraint,
eq. (13).

Those displacements which violate the constraints are prescribed as being
equal to the specified values. Invariably, more than one alternative will
exist for the specification of stiffnesses with prescribed displacements. If
both the degrees of freedom of a joint are prescribed~then the moments of
inertia of both elements common to the joint must be prescribed. However, if
a single degree of freedom is prescribed at a joint, then it is not obvious
which of the two elements should have a prescribed stiffness. Herein may lie
the nonuniqueness of the resulting solution for beams with certain boundary
conditions with certain loadings. A rational criterion for making such a
decision should be based on the magnitudes of displacements of one joint
relative to the other, since such relative displacements are functions of the
properties of the element alone. Accordingly, relative displacements of joints,
on either side of the joint whose displacement is prescribed, are determined.
The element with the joint which has a higher relative displacement is se-
lected for the purposes of prescribing the moment of inertia.

The procedure is straightforward from this point onwards. The moments of
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inertia of the constrained elements which guarantee the satisfaction of the
deflection constraints are obtained by the solution of eq. (18). The inertias
of the remaining elements initially obtained through the use of energy based
recurrence relation of reference 3 are finally adjusted to satisfy the
equality volume constraint, eq. (2).

RESULTS AND DISCUSSION

In general, because of the necessity of satisfying the equality constraint,
eqs. (12) and (18) do not guarantee the satisfaction of the stress and deflec-
tion constraints exactly. This causes the optimization procedure to fail to
converge or converge extremely slowly to the optimum solution. This is avoided
by modifying the inequality constraints with a multiplicative constraint
factor, R, which tends to unity with convergence to the optimum solution. The
parameter R is chosen to be the least of the ratios of the prescribed dis-
placements to the actual displacements in the case of displacement constraints
or to be the maximum of the ratios of the actual stress to the prescribed
stress in the case of stress constraints. 6 is chosen to be greater than
unity. Increasingly higher values of 3 imply increasingly stiffer designs.

Figures 1 and 2 portray the effects of the implementation of the stress
constraints on the optimum design of vibrating be-ams with two different support
conditions. Figure 3 illustrates the effect of implementing the deflection
constraint on the optimum design of a vibrating cantilever beam.

Figure 1 considers the case of a cantilever beam subjected to two
different types of loading for the implementation of stress constraints in
the optimization of its fundamental frequency of free vibration. In one case
the loading consists of a concentrated load at the tip with k2 =5 and {a}=
(amax)o {1}. In the other case the loading consists of a concentratedload2
bending moment at the tip with k =5 and {1}=(max)0 {11. As expected, thea maxload
constraint corresponding to the moment loading is much more severe and
accordingly leads to a drastic reduction of the optimized fundamental frequency.
A comparison of these designs with the optimized beam without these constraints
emphasizes the importance of such constraints in optimal design.

Figure 2 considers the case of a clamped-clamped beam subjected to a con-
centrated load at the center with {Cr}=(amax) 0 {l} for two distinct values of
ka. If it were not for the stress constraints.,the moment of inertia would
approach zero at the center of the beam as in reference 3. Severity of the
stress constraints brings about increased quantities of material to be disposed
around the center of the beam.

Figure 3 illustrates the material distribution of an optimum cantilever
beam subject to the deflection inequality constraint with k2=5 and {r}={r} 0load
under a concentrated load at the free end of the beam. Since no singularity
exists with inequality constraints of either the displacement or stress type
and since the deflected shape of the beam under a concentrated end load or a
moment involves no change of curvature, it can be expected that the solution

516



obtained using only ten elements for the cantilever beam model is a good
approximation to the optimum continuous model.

In conclusion, it may be remarked that with only a minor change of the
computer logic the formulation extends quite easily to cases wherein both
deflection and stress constraints are specified simultaneously.
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Figure 1.- Optimum area distribution for a beam clamped at x=O and
free at x=9- under stress constraints; n=2.
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Figure 2.- Optimum area distribution for a beam clamped at both
ends under stress constraints; n=2.
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Figure 3.- Optimum area distribution for a beam clamped at x=O and
free at x=k under a deflection constraint; n=2.
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AN OPTIMAL STRUCTURAL DESIGN ALGORITHM USING OPTIMALITY CRITERIA

John E. Taylor
University of Michigan

Mark P. Rossow
Washington University, St. Louis, Missouri

SUMMARY

An algorithm for optimal design is given which incorporates several of the
desirable features of both mathematical programming and optimality criteria,
while avoiding some of the undesirable features. The algorithm proceeds by
approaching the optimal solution through the solutions of an associated set of
constrained optimal design problems. The solutions of the constrained problems
are recognized at each stage through the application of optimality criteria

based on energy concepts. Two examples are described in which the optimal
member size and layout of a truss is predicted, given the joint locations and
loads.

INTRODUCTION

In the field of optimal structural design, two general techniques for
finding the optimum design may be distinguished: mathematical programming
methods and the use of optimality criteria. In the present paper, an algorithm
is given which resembles a technique of mathematical programming in that it
proceeds by stages, with an improved design generated,"at each stage. However,
in contrast to most mathematical programming methods, the improved design is
identified at each stage by the application of optimality criteria, rather than
by a search technique. In this way, the computationally expensive search pro-
cedure is avoided, yet the principle of approaching the optimum through a suc-
cession of small changes is preserved. The algorithm is explained and illus-
trated by application to the optimal design of a truss, where member cross-
sectional areas are taken as the design variables.

SYMBOLS

A. cross-sectional area of truss member i
I

a slack function
r

D(p,S*) trial design corresponding to p and S*
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E elastic modulus

F. x and y components of external loads applied at nodes and
numbered consecutively

L augmented function

Z. length of member i1

m total number of nodes

n total number of truss members, assuming each node connected to
every other node by a member

P potential energy

S value of lower bound constraint

V specified volume of material

6, nodal displacements, numbered corresponding to F.J J

E. strain of member i
1

A. Lagrange multipliers for area constraints
1

Lagrange multiplier for volume constraint (also equal to specific
strain energy of fully-stressed members)

1k9 1 k(P,S) specific strain energy of member k, corresponding to
fully-stressed set p and constraint value S

ENERGY FORMULATION

Consider the problem of finding the maximum stiffness design of a planar
truss, given a specified total volume of material to be allocated to the various
members of the truss, and specifying inequality constraints on the truss members'
cross-sectional areas. The connectivity of the truss is unrestricted; however,
locations of nodes are specified beforehand, and the possibility of member
buckling is ignored. Taylor (ref. 1) and Hiley (ref. 2) have shown how a
problem of the type just described may be formulated by the use of the potential
energy function of the structure. In the present paper a similar energy for-
mulation will be used. The potential energy of the truss may be written

n 2m

P = 1 zi A i i - £ Fj 1I
i=l j=l(

(See the list of symbols for definitions of the parameters.)
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The specific strain energy n. is related to the strain c. by1 1

p. = Ec /2 (2)
1 1

where E is the elastic modulus.

The volume constraint is

n

Z A.£. = V (3)

where V is the specified volume of material. The inequality constraints are

A. > S (4)1--

where S is the specified lower bound constraint.

It can be shown that the problem of maximum stiffness design is equivalent
to that of maximizing the potential energy P (refs. 1,3).

The constraints may be introduced directly into the problem formulation by
defining the slack functions a byr

2A - a = S, r= 1,2,...,n (5)r r

and introducing Lagrange multipliers X and A. to form the augmented function1

n n

L = P + X(V- , Ai~i) + • A.(S - A. + a.2 (6)
i=l i=l

Requiring the first derivatives of L with respect to 6 k A r and a to
vanish gives r

n

E i Ai M - Fk = 0 (7)
i=l k

S- X - A =0 (8)
rr r r
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A a =0 (9)
rr

while application of the Kuhn-Tucker theorem of non-linear programming gives

A < 0 (10)

These equations can be shown to be both necessary and sufficient for
optimality (refs. 1,4,5).

A basic assumption about the optimal design problem formulated above will
now be made. It is assumed that for every value of S in the interval

n

0<SV/(E Zi) an optimal design exists. That is, the optimal design is assumed
i=l

to be a function of S. Furthermore, this function is assumed continuous.

It is of interest to note that at least one optimal design can always be
found easily for the value of the lower bound constraint given by

n

S v=(• Zi) (11)
i=l

For by equation (4) all admissible designs must satisfy

n

A. > S M V/(Z , j = 1,2,...,n (12)
-J- i=l

However the strict inequality in equation (12) cannot apply for any j since
this would violate the volume constraint in equation (3). Thus the optimal
design for the value of S in equation (11) must be the "equally-sized" design

n

A. = V/(Z -l), j = 1,2,...,n
i=l

OBSERVATIONS ON GOVERNING EQUATIONS

Inspection of the preceding set of governing equations (3)-(10) leads to
several observations of later use in this paper. First note that when a member
area A in the optimal design is strictly greater than the lower bound con-
strainE value S, then the corresponding slack function ar# 0 by equation (5)
and Ar = 0 by equation (9), but then equation (8) yields
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S=X (13)r

Thus all members with areas greater than S are stressed to the same level.

Note that by equation (2), equation (13) may be written as a linear equa-
tion in the strain c and hence linear in the nodal displacements:

rr
C r = ± /E (14)

Next consider a member t in the optimal design which is stressed below the
level X (eqs. (8) and (10) exclude the possibility that an element in the
optimal design is stressed above the level X.):

St < X (15)

Then by equation (8) At # 0 and so equations (9) and (5) imply

A = S (16)t

The implication of equations (14) and (16) may be summarized by saying that
the members of the optimal design may be divided into two groups: fully-
stressed members (n = X and A > S) and members at the constraint (n < X and
At = S). As shall fe discusseh later in this paper, under certain conditions
borderline cases exist where a member is both fully-stressed and at the con-
straint.

A second observation about the governing equations for the optimal design
problem can be made with the help of the fully-stressed condition, equation
(14). Introducing equations (14) and (2) into the equilibrium relations (equa-
tion 7) yields

N2XErE e X A r- + S t t Fk = 0 (17)
r r r r D k k

where the first summation is over the set of fully-stressed members, and the
second summation is over the set of members at the constraint (hence areas equal
S). e is the sign associated with member r (compression or tension).

r

Equations (14) and (17) have been formulated for the problem of maximum
stiffness design for a fixed volume of material V. The maximum specific strain
energy A is found as part of the solution. However, this problem may be shown
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(ref. 6) to be equivalent to the problem of minimum volume design for specified
X. From now on in this paper it will be assumed that a value of A is specified.
The solution corresponding to this value of X may later be made to correspond to
some specified volume of material by multiplying all results by a common factor.

With X specified, equations (14) and (17) become linear equations in the
remaining unknowns 6 and A . Thus once it has been determined which members
are to be fully-stressed in the optimal design, the areas and nodal displace-
ments may be calculated by solving a linear system of equations.

FULLY-STRESSED SET AND TRIAL DESIGN

Suppose that a subset of the n members of the truss have specific strain
energy X, as well as specified signs, and do not violate nodal displacement
compatibility. These members will be called a "fully-stressed set".

Suppose that a fully-stressed set p has been designated and a value of the
lower bound constraint specified, S = S*. In general, it is not known before-
hand if p corresponds to an optimal design for S = S*. However, knowing p and
S*, we can nevertheless determine a corresponding set of areas and displace-
ments by writing equations (17) and (14) for the fully-stressed set p and then
solving these equations.

The set of areas and displacements found in this way will be written
D(p,S*) and will be called the "trial design corresponding to p and S*." Note
that by assumption the trial design is a continuous function of the lower bound
constraint, for fixed p.

Once a trial design D(p,S*) has been calculated, equations (10) and (4)
may be used to determine if the trial design is also an optimal design. If
D(p,S*) is optimal, then p will be called the "optimal fully-stressed set cor-
responding to S*."

BASIS FOR ALGORITHM

Using the definitions just introduced, we can now discuss the basis for an
algorithm for finding the optimal design.

Starting with a fully-stressed set r and a value of S = S* such that
D(r,S*) is optimal (finding such a starting design presents no difficulties, as
was observed earlier), S is repeatedly reduced and D(r,S) recalculated until a
value of S is found for which D(r,S) is non-optimal. Since the cause of the
non-optimality must lie in the incorrect choice of fully-stressed members, a
method is needed for identifying those members which must be added to or
deleted from the optimal fully-stressed set as S decreases. Such a method may
be derived from a close examination of the optimal designs in the neighborhood
of a point where the optimal fully-stressed set changes.
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Consider the particular case where a single member, for example, j, is to
be added to the optimal fully-stressed set. In figure 1, S = Sc is the value of
the lower bound constraint for which nj first equals the constraint value X as S
is decreased from a value S2 slightly above Sc to a value Sl slightly below Sc.
Note that, for S = S , member j is an example of a "borderline" case referred
to earlier (A. = S and n. = X).

j c j

If p denotes the fully-stressed set for which D(p,S) is optimal for
S > S > S , then D(p,S) is non-optimal for S > S > SI. since by hypothesis p
lacks the F'ully-stressed member j. c -

Denote by q the fully-stressed set obtained from p by adding member j
and consider a member, for example, k, which belongs to neither p nor q. By
hypothesis,

1k(PSc) = nk(qSc < X

Furthermore since nk(P,S) and nk(qS) are continuous functions of S, it
follows that

1k(P,S) < X and jk(q,S) < X

for S 1< S < S c. For the same range of S, it must also be true that

n1 (p,S) > X

since D(p,S) has been assumed to be non-optimal. Thus the member to be added
to the fully-stressed set p to form the optimal fully-stressed set q (for
S < S < S ) may be determined by examining the non-optimal design D(p,SI) -
tie-memberCto be added is that member with specific strain energy exceeding X.
The sign associated with the member j to be added is identical to the sign of
member j in D(q,SI), as may be established by a continuity argument similar to
that given above.

The preceding discussion dealt with the procedure for identifying the
member to be added to the optimal fully-stressed set as S decreases. An anal-
ogous procedure can be developed for identifying the member to be deleted from
the optimal fully-stressed set. Proceeding as in the previous paragraphs, it
can be shown that the members of the optimal fully-stressed set can be iden-
tified by inspection of a non-optimal design D(p,S ) - the criterion being that
the member in p whose area is less than SI, is to ýe deleted from p to form the
optimal fully-stressed set.

A final remark on the algorithm should be added here. In developing the
method for adding or deleting fully-stressed members, the assumption was made
that only one element at a time could be both fully-stressed and have area equal
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to the constraint value. In certain problems, especially where a high degree
of symmetry is present, this assumption may be violated. The argument pre-
sented above for identifying additions or deletions to the optimal fully-
stressed set is no longer generally valid. In the examples considered in the
course of this study, several instances were observed where more than one mem-
ber was fully-stressed and also at the constraint for the same value of S.
However, the algorithm had no difficulty in these instances and found the
optimal fully-stressed set. The information gained by examining the non-
optimal design in the vicinity of a change in the fully-stressed set was a
reliable guide in determining the elements to be added or deleted. Thus the
lack of theoretical justification for the algorithm in this situation does not
appear to be serious.

EXAMPLE PROBLEMS

In figure 2 an example is presented, involving sixteen interior nodes
loaded as shown and also two support nodes located far from the interior nodes
and not shown in the figure. The optimal design (shown in the figure) is self-
equilibrated. In this example, the algorithm was able to select the appro-
priate sixteen members comprising the optimal design from among all possible
members. In achieving this result, no advantage was taken of the symmetry of
the problem.

In figure 3, seven internal and four support nodes are specified, and a
single applied load is to be carried by the truss. The optimum design is found
to contain ten members and is reminiscent of a Michell truss.
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Figure 1.- Specific energies near point where member j is to be
added to optimal fully-stressed set.

Figure 2.- Optimal truss, with sixteen interior nodes.
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Figure 3.- Optimal truss, with seven interior nodes and
four support nodes.
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A RAYLEIGH-RITZ APPROACH TO THE SYNTHESIS OF LARGE STRUCTURES

WITH ROTATING FLEXIBLE COMPONENTS
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SUMMARY

The equations of motion for large structures with rotating flexible com-
ponents are derived by regarding the structure as an assemblage of substruc-
tures. Based on a stationarity principle for rotating structures, it is shown
that each continuous or discrete substructure can be simulated by a suitable
set of admissible functions or admissible vectors. This substructure synthe-
sis approach provides a rational basis for truncating the number of degrees of
freedom both of each substructure and of the assembled structure.

INTRODUCTION

The methodology for analyzing large complex structures has developed along
different lines. One approach represents a natural extension of methods de-
veloped originally for civil and aircraft structures, culminating in the fi-
nite-element method (ref. 1) and the component-mode synthesis (refs. 2,3). Al-
though rotation of the structure could be accounted for through rigid-body
modes, work using the approach of references 1-3 has been concerned mainly
with nonspinning structures. On the other hand, an entirely different approach
was developed in conjunction with spinning and nonspinning spacecraft struc-
tures. This approach was dominated by the fact that early spacecraft could be
treated as entirely rigid. Hence, in the early stages of development, struc-
tures were assumed to consist of point-connected rigid bodies arranged in "to-
pological trees" (refs. 4,5). With time, the rigidity assumption was relaxed
gradually by first allowing for flexible "terminal bodies" (refs. 6,7) and
then finally for all flexible bodies (ref. 8). A third approach to the prob-
lem of spinning flexible spacecraft was concerned with spacecraft consisting
of a rigid body with flexible appendages (ref. 9,10). This latter approach
can be regarded as an early application of the component-mode synthesis to
spinning structures.

Most papers concerned with structures simulated by point-connected rigid
bodies, such as references 4,5, proposed to derive the equations of motion by
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the Newtonian approach, on the assumption that such a derivation was more suit-
able for digital computation. Of course, an early difficulty became immediate-
ly apparent in the form of the handling of interbody constraints, a major crit-
icism of the Newtonian approach in most circumstances. Another difficulty was
the relatively large number of degrees of freedom involved, a difficulty only
compounded by permitting various bodies to be flexible. As a result, there
are no meaningful ways of truncating the problem.

This paper is concerned with the mathematical simulation of large struc-
tures, where the structure is regarded as an assemblage of substructures. In-
deed, the mathematical model is assumed to consist of a central substructure
with a number of appended substructures, where some of the latter can rotate
relative to the central substructure. To ensure that the various substructures
act as parts of a whole structure, an orderly kinematical procedure is used
which takes into account automatically the superposition of motion of the cen-
tral substructure on the motion of the interconnected substructures. The sys-
tem equations of motion are derived by means of the Lagrangian approach, which,
when used in conjunction with the kinematical procedure just described, does
away with the question of constraints. The equations of motion are derived
from scalar functions, namely, the kinetic and potential energy, where the
first requires the calculation of velocities only. In addition, discretiza-
tion of the kinetic and potential energy in conjunction with linearization
ensures proper symmetry and skew symmetry of the coefficient matrices in the
final equations of motion. Using a Rayleigh-Ritz approach, the motion of each
continuous (discrete) substructure can be represented by a linear combination
of admissible functions (vectors) rather than substructure natural modes.
This approach is based on a stationarity principle for rotating structures de-
veloped recently by the first author (ref. 11). Finally, the truncation prob-
lem can be handled much more efficiently by the substructure synthesis ap-
proach, as the possibility of truncating the number of degrees of freedom both
of the individual substructures and of the assembled structure provides a much
more rational basis for an overall truncation decision.

KINEMATICAL CONSIDERATIONS

Let us consider a general structure consisting of a central substructure
C and a given number of appended substructures (see fig. 1), where the latter
are of three types: rigid and rotating relative to the central substructure
(type R), elastic and nonrotating relative to the central substructure (type
E), and elastic and rotating relative to the central substructure (type A).
Clearly, there can be more than one appendage of a given type, but we shall
confine our discussion to a representative one of each type, with summation im-
plied over the entire number of substructures. Although we consider here only
peripheral substructures, the formulation can be easily extended to chains of
substructures, as discussed later.

Let us introduce the inertial system of axes XYZ with the origin at 0 and
identify a system of axes xcYczc with the origin at an arbitrary point C of
the central substructure. Then, denoting by woc the radius vector from 0 to C,
by rC the position vector of any mass point in the substructure, and by YC the
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elastic displacement of that point measured relative to XCYCZC, and recognizing
that woc is in terms of components along XYZ and rC and uC.are in terms of com-
ponents along xcYCZC, the absolute position of the mass point in question in
terms of components along xCYCZC is wC = TnCwOC + rc + uc, where TOC is the ma-
trix of direction cosines between XYZ and xCYCZC. Moreover, if Q is the angu-
lar velocity of the frame XCYCZC relative to XYZ, the absolute velocity of the
mass point is

WC = TOCJOC - (rC + uC)2C + 6C (1)

where rc + uc is a skew symmetric matrix associated with rC + uC and 6C is the
elastic velocity of the point relative to axes XcYcZC.

To calculate the absolute velocity of a point in the substructure R, we
must first obtain the velocity of point R as well as the angular velocity of
a reference frame xCRYCRZCR attached to the central substructure at R and with
axes parallel to the rotor axes xRYRzR when at rest and when the central sub-
structure is undeformed. Due to geometry alone the orientation of axes XCRYCR
zCR relative to xCyCzC is given by the constant matrix of direction cosines
LGR. Denoting by YCR the elastic deformation vector at point R of the central
substructure and assuming that the components uCRx, uCRy, UCRz,. of uCR are small,
the rotation vector of axes xCRYCRzCR due to elastic deformation can be writ-
ten in the form
(L ) UCR - CRy zCRx Du ucCRy - 1CRx(

VCR(LGRUCR) CR RCR DzCR axCR DxCR 9CR (2)

where VCR is a skew symmetric differential operator matrix corresponding to the
curl operator. Hence, the matrix of direction cosines between axes xCRYCRZCR
before and after deformation is

1 CRy -UCRx _( CRx
xcR CR xCR

LCRUCy UcRxj 1UCRz u CRy (3)cR - cCR YCR 9ZCR

Du CRx Du zC( Ucz Czy1DzC xCR Yj C ZC R
Moreover, letting LR be the matrix of direction cosines between axes xRYRZR
and xCRYCRZCR, the transformation matrix between axes xRYRzR and xcyczC is
simply TCR = LRLCRLGR-

Denoting by WR the angular velocity of the rotor relative to axes xCRYCR
zCR, the absolute angular velocity of xRYRzR in terms of components along
xRyRzR is

R = TCR ýC + LR VCR(LGR YCR) + (4)
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where the second term in equation (4) is the angular velocity of axes XCRYCRZCR
due to the elastic motion of the central substructure. Because the rotor is
rigid, the position of a mass point relative to R is simply rR. Hence, the
absolute velocity of the point in question is simply

ýR = TCR CR - rR QR C5)

where WCR is the velocity of point R obtained from Wr by substituting the coor-
dinates of the point R for those of an arbitrary point.

Next, let us turn our attention to the substructure E and denote by XEYEZE
any convenient set of axes with the origin at E and attached to the substruc-
ture. Using the analogy with equation (4), the angular velocity of xEYEZE is

ýE = TCE 9C + VCE(LGE %CE) (6)

where TCG = LCELGE. Moreover, by analogy with equation (5), the absolute ve-
locity o a mass point in the substructure is

WE = TCE •CE - (rE + uE)2-E + 6E 7)

where 6IE is the elastic displacement relative to axes XEYEZE.

The extension to elastic substructures rotating relative to the central
substructure is quite obvious. Letting WA be the angular velocity of the sub-
structure A relative to a set of axes xCAYCAzCA attached to the central body
at point A, the absolute angular velocity of xAYAzA is simply

A= TCA 9C + LA VCA(LGA •CA) + 'A (8)

where TCA = LALCALGA, and the absolute velocity of an arbitrary point in A is

WA = TCA VCA - (rA + uA)'A + 6A (9)

Finally, let us consider chains of substructures. First, we note that
the angular velocity of a peripheral substructure and the absolute velocity of
an arbitrary point in a peripheral substructure are written in terms of the
angular velocity of a set of axes attached to the central substructure and
with origin at the interconnecting point and the translational velocity of the
interconnecting point. As an example, see equations (4) and (5). To write
the angular velocity and absolute velocity of an arbitrary point of a sub-
structure in a chain, we simply replace 9uartities pertaining to the central
substructures, such as TCR, QC, VCR(LGR YCR), and WCR in equations (4) and (5),
by analogous quantities pertaining to the immediately preceding substructure
in the chain.
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SYSTEM DISCRETIZATION AND/OR TRUNCATION

In general, each elastic substructure possesses a large number of degrees
of freedom. In fact, if the substructure is continuous, then its number of
degrees of freedom is infinite. For practical reasons, we must limit the for-
mulation not only to a finite number of degrees of freedom but also to as small
a number as possible consistent with a good simulation of the system dynamic
characteristics. In this regard, we wish to use a Rayleigh-Ritz approach and
represent the elastic displacements of a continuous substructure by a linear
combination of space-dependent admissible functions multiplied by time-depen-
dent generalized coordinates of the substructure. If the substructure is dis-
crete, then instead of admissible functions we must use admissible vectors.
Note that it is common practice to use as admissible functions and admissible
vectors the eigenfunctions and eigenvectors of the substructure. In view of
the stationarity principle for gyroscopic systems developed in reference 11,
however, this is not really necessary, and a reasonable set of admissible func-
tions or admissible vectors should suffice. Hence, we shall use the discreti-
zation and/or truncation scheme

YC =4 CC Y' E "EE E 'A = 'A PA (10)

where UC, n and nA are time-dependent vectors of generalized displacements
with dimensions TIC !F, and TA' respectively, and •C'r E, and PA are 3 x TC,
3 x nE, and 3 x n, space-dependent matrices of admissible functions or admis-
sible vectors, as the case may be. Note that for a continuous substructure u
depends on continuous space variables and for a discrete substructure it de-
pends on discrete space variables. In the latter case, the partial derivatives
involved in the quantity vu are to be replaced by corresponding slopes.

Although we have mentioned both continuous and discrete substructures in
the above, we have made no attempt to make clear distinction between the two
types of mathematical models. Neither have we elaborated on the various types
of discrete models, such as lumped models, finite-element models, etc. Of
course, the mathematical model used depends on the substructure mass and stiff-
ness distributions, but this is of no particular concern here. The reason for
this is that, independently of the mathematical model postulated for the sub-
structure, the general idea is the same, namely, to eliminate the spatial de-
pendence by the use of admissible functions or admissible vectors and to trun-
cate the problem by limiting the number of these functions or vectors.

LAGRANGE'S EQUATIONS OF MOTION

To derive Lagrange's equations of motion it is necessary to produce first
expressions for the kinetic energy, potential energy, and nonconservative vir-
tual work. Assuming that in equilibrium the central substructure C, substruc-
ture R, and substructure A rotate with the uniform angular velocities QC about
zC' ýR about zR, and zA about zA, respectively, while any other motion is zero,
we can write @= QcC k + O c, C R = "R ýR + OR ýR, %A QA ZA + ®A JA, where

is the vector of direction~hosines between zC and XYZ, ZR is the vector of
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direction cosines between zR and XCRYCRzCR, and kA is the vector of direction
cosines between ZA and XCAYCAZCA. Moreover, eC, (R, and OA are 3 x 3 matrices
depending on oscillation of the axes xCYCZC relative to XYZ, etc. Using equa-
tions (10) and retaining only linear terms, the absolute velocities of typical
points in the various substructures become

Cl c c2 c 'Y R,1 ýR + R2 9R

F1 YE +E 2 qýE AA +A2 9A

T T - -]T TwT TT TC TIT TTwhere qC =[OCT: C TqCT YR = 0~O �Ci-C _~R] Y 9E [VOc _C uc PE
and YA =WOC, -C T C ,T T ;I]T are configuration vectors for the substructures.

The system kinetic energy can be written in the form

T = TC + TR + TE + TA (12)

where

T= I T +C dm C .T + - C 2 T-
TC 2 = ~2 C C-II ½C ½ C-12 ½C+ ½ qcC 22 qc

mC

fm .T dm T T 1 q T R2 2 9R
R 2 R -R dR =2'-R + Rl 2R + YmR R (13)

2 Fm T E dT y T1 T (E~• E Eq EE22_

TE 2m E 11l -E E E F12 1 +T )E + 2 T

TA- =2 I wT •A dmA = ½•A A-l1  A + qT A-1 A +1½AA2q

m A ýA A= - A -A 1Vl2 ýA 2 9A AV22 9AmA

in which - : I cT Oc RI R.
C c T C dm f RR T R dmR

m C 3 1 C mR i

E T E dm AiT (14)
Ei fm E.ij A .

Note that the square matrices Cii' Tij' Eij, and t-, have partitioned forms,
with many of the off-diagonal suimatrices equal to zero. Introducing the n-
dimensional configuration vector for the entire system in the form Y =

T, TI T' TI ' T ITT
[Ioc, eA ,eC 'A~E •E A] , where n is the number of degrees of freedom of
the sysiem, the kinetic energy can be written in the general form
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T= T M + qT F + 'qT KT (15)

where M and KT are symmetric matrices. Similarly, the potential energy for
the entire system is

V = 1 qT Kv (16)

where Kv is a symmetric matrix, and .the nonconservative virtual work has the

form

6W QT 6q (17)

where Q is the nonconservative generalized force vector.

In general, the matrices M and F depend explicitly on time. However, un-
der certain circumstances, such as when the substructures R and A are symmet-
ric, the time dependence disappears. A helicopter with a symmetric rotor ro-
tating relative to an airframe while in hover is an example, where the entire
rotor is considered as a substructure. Another possibility is to consider
each rotor blade as a separate substructure. In this case, a combination of
substructures forms a symmetric rotor and M and F will once again be constant
matrices.

Lagrange's equations can be written in the symbolic form

d ýL DL_d - - = Q (18)
dt q

where L = T - V is the system Lagrangian. Assuming that M and F are constant,
introducing equations (15) and (16) into the Lagrangian L, and using equation
(18), we obtain the Lagrange's equations of motion

Mq + (FT - F)q + (KV - KT)q Q (19)

where FT - F is a skew symmetric matrix. Hence, e~quation (19) represents a
typical gyroscopic system. The natural frequencies and natural modes of the
complete structure and the closed-form solution of equation (19) can be ob-
tained by the methods developed in references 12 and 13. The interest here
is not so much in the response as in the dynamic characteristics of the sys-
tem, and in particular, the truncation effect on these characteristics.

THE EIGENVALUE PROBLEM AND TRUNCATION IMPLICATIONS

Introducing the 2n-dimensional state vector x(t) and the associated 2n-
dimensional force vector X(t) in the form

x(t) = [9T(t) ,gT(t)]T X(t) = [gT(t) IT]T (20)
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where 0 is the n-dimensional null vector, as well as the 2n x 2n matrices
S"T K K

M 0 F - F ,Kv T
T: G = (21)

where 0 is the null matrix of order n, the n second-order differential equa-
tions of motion, equation (19), can be replaced by the 2n first-order differ-
ential equations in the state space x(t), where the equations have the eigen-
value problem

XIx + Gx = 0 (22)

It is shown in reference 12 that the eigenvalue problem (22) can be reduced to
the real symmetric form

w2 Iy =Ky , 2 1Iz = Kz (23)

where K = GTI-lG is a real symmetric matrix. The eigenvalue problem (23) is
in terms of two real symmetric matrices and is known to possess real eigen-
values. Assuming that I is positive definite, it follows that K is positive
definite, so that the e~genvalues are not only real but also positive. More-
over, ýhe eigenvalues wr (r = 1,2,...,n) have multiplicity two, so that to
each w•belong the eigenvectors Yr and zr. Because I and K are positive defi-
nite all the eigenvectors are inaependeit. In fact, they are orthogonal with
respect to the matrix I.

Next, let us use the Cholesky decomposition and write I in the form I =
LLT, wiere L is a lower triangular matrix. Introducing the notation y# = LTYr,

= L 'z(r, = 1,2,...,n), the eigenvalue problem (23) becomes

y' K'y' 2 z'=K'z' (24)

rr r -, =r Kr r

where K' L-lKL-T is a real symmetric positive definite matrix, in which
LkT = (L-')T.

Denoting by v an arbitrary 2n-vector, Rayleigh's quotient associated
with the eigenvalue problem (24) can be written in the form (ref. 11)

vTK
v TK'v

R(v) = T (25)
vv

Because K' is real and symmetric, it is well known that Rayleigh's quotient
has a stationary value in the neighborhood of an eigenvalue. Note that the
symmetric formulation (24) permits us to conclude that a stationarity prin-
ciple exists also for gyroscopic systems.
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Next, we wish to examine the truncation effect on the system characteris-
tics. To this end, let us examine the eigenvalue problem Av = Xv, where A is
a real symmetric matrix of order N, and assume that the eigenvalhes of A are
ordered so that X1 < X2 < • < XN" Now, let us form the matrix B by deleting
the last row and column of A and write the eigenvalue problem Bu = yu, where
the eigenvalues y. (j = 1,2,...,N-1) are ordered so that l -<-Y2 .- "- < •N-I"
The question arisLs as to how the eigenvalues yj relate to the eigenvalues xi.
To this end, one can use the Courant's maximum-minimum theorem (ref. 14) and
prove that

X1 < YI < X2 <Y 2 < '" < XN-I < N-_ < XN (26)

We shall refer to inequalities (26) as the inclusion principle.

Now, let us return to the truncation problem. The 2n x 2n matrix K' was
obtained as the result of representing the spinning structure by an n-degree-
of-freedom system. Note that the rotational coordinates are also included in
these degrees of freedom. This representation is tantamount to the imposition
of a given number of constraints on the original structure. For example, the
first of equations (10) can be written in the form

n C
u= TCi nCi (27)

so that the constraints imposed on the system are nC,nc+l = nC,nC+2 = .. 0.

Truncating the series (27) by assuming that nC,nc = 0, we obtain a matrix K"

obtained from K' by deleting two rows and the corresponding two columns. If
the eigenvalues w2 of K' are such that~w1

2 < < .2 . < n and the eigen-
values S• of K" ae such that YI2 < 2 < . n 1 t-hen we have

W2 < 2 < 2 < 2 < ... 2 <2_ < n2 <2 (28)

Note that the fact that the eigenvalues of K' and K" have multiplicity two is
automatically taken into account in inequalities (28). On the other hand, by
relaxing one constraint, i.e., by adding one term to the series (27), we ob-
tain a (2n + 2) x (2n + 2) matrix K"' which is obtained by adding two rows
and columns to K'. The eigenvalues a2 of K"' are such that

2 2 2 2 <2 2 2 (29)
1IEl 1-2 2 -" n -n - n+l

The above developments permit us to conclude that the system estimated natural
frequencies tend to decrease monotonically with each additional degree of
freedom. At the same time there is a new frequency added which is higher
than any of the previous ones.

The question remains as to how to select the admissible functions or ad-
missible vectors. The first thing that comes to mind is to take them as the
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eigenfunctions and eigenvectors of the various substructures. In many cases,
the solution of the eigenvalue problem for a substructure can be quite a
task in itself, so that in such cases one may wish to use deformation patterns
only approximating the actual modes. This can be regarded as imposing addi-
tional constraints on the system, which tends to raise the natural frequencies
of the system, but this may be considered as a viable alternative, particular-
ly when the validity of the solution of the eigenvalue problem is question-
able. Experience with the Rayleigh-Ritz approach shows that the system natu-
ral frequencies are not very sensitive to the admissible functions used, which
can be traced to the stationarity principle. But a stationarity principle
exists also for discrete systems, so that the same conclusion can be extended
to admissible vectors.

The truncation by substructures has a clear advantage over truncation
of the structure as a whole. The reason is that it permits a more rational
judgement based on the substructure properties, such as the mass and stiffness
distributions. Generally one is interested in only a limited number of lower
modes of the complete structure. Hence, a very stiff and light substructure
is likely to have less effect on the modes of the complete structure than a
flexible heavy substructure. Hence, one can truncate the first more severely
than the second. Some ideas for truncation can be obtained by estimating the
natural frequencies of the substructures. This by no means implies that one
need solve the eigenvalue problem for the substructures exactly. Indeed,
using a Rayleigh-Ritz procedure for continuous or discrete systems, in con-
junction with a preselected set of admissible functions or admissible vectors,
it is possible to obtain a reasonable estimate of the lower frequencies of
each substructure. Note that the Rayleigh-Ritz method can be used to produce
and solve an eigenvalue problem of considerably lower dimension than that of
the full eigenvalue problem for the substructure. The estimated lower natural
frequencies of the substructure, when compared to those of other substructures,
can be used merely as a guide for truncation purposes. In fact, the eigen-
vectors serve no useful purpose and need not be calculated, as the same ad-
missible functions or vectors can be used to represent the substructure in
the generation of the eigenvalue problem for the complete assembled struc-
ture. This conclusion is based on results shown in reference 11.

If the dimension of the eigenvalue problem for the complete assembled
structure is still too large, and the higher modes are not really necessary,
then one can solve only for a given number of lower modes by using such tech-
niques as subspace iteration.

CONCLUDING REMARKS

A procedure has been shown whereby the equations of motion for large
structures with rotating flexible components can be derived by the Lagrangian
approach. A fundamental consideration in the derivation of Lagrange's equa-
tions is the superposition of substructure motions by means of an orderly
kinematical procedure, which automatically eliminates the problem of con-
straints. Using a Rayleigh-Ritz approach, it is shown that each continuous
or discrete flexible substructure can be simulated by a finite number of ad-
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missible functions or admissible vectors and exact substructure modes are
not really necessary. This conclusion is based on a stationarity principle
for rotating structures developed recently by the first author (ref. 11). Fi-
nally, the substructure synthesis approach provides a rational basis for trun-
cating the number of degrees of freedom both of each individual substructure
and of the assembled substructure.
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THE STAGING SYSTEM:

DISPLAY AND EDIT MODULE

Ed Edwards
Battelle Columbus Laboratories

Leo Bernier
Air Force Flight Dynamics Laboratory

SUMMARY

The Display and Edit (D&E) Module, described in this paper, is one of six
major modules being developed for the STAGING (STructural Analysis through
Generalized INteractive Graphics) System. Several remarks are included con-
cerning the computer environment and the architecture of the data base. But
the thrust of the paper is, clearly, to provide an understanding of the utility
of this module. This is accomplished by defining, to a reasonable level of
detail, the more prominent features of D&E.

INTRODUCTION

To assure an adequate appreciation for the D&E capabilities, it is impor-
tant to have a good conceptual understanding of STAGING and of the need for
STAGING. Over recent years, the finite element technology has literally
"burst" onto the scene, becoming one of the most powerful and popular analyti-
cal methods available today. One result of this popularity has been a proli-
feration of computer programs, all claiming to be unique or better than other
similar programs. In some cases, the claim is simply untrue. In more cases,
capabilities do overlap, but the programs are still unique enough to justify
their existence. In all cases, the programs cannot communicate easily with
one another and are cumbersome to use. The net result is that we have less
capability than we need, but more than we can use effectively. To cope with
this problem, efforts are underway to develop STAGING.

STAGING is a highly interactive capability intended to: (a) synthesize
the finite element methodology into a cohesive, user-oriented capability, and
(b) radically reduce the time required to conduct a finite element analysis.
The system will allow potential users to rapidly generate finite element models
and interpret analysis results independent of the analysis program chosen to
conduct the analysis. Although STAGING is specifically being aimed at the
finite element methodology, early consideration is being given for its eventual
extension to other technical disciplines.

STAGING (fig. 1) consists of six major modules; (a) Executive Monitor,
(b) Preprocessor, (c) Display and Edit, (d) Postprocessor, (e) Analysis
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Programs, and (f) Generalized Data Base. The Executive Monitor will serve as a
"traffic cop" to help a user find and use a particular capability, and to
ensure the proper flow of information between modules. The Preprocessor will
be used to generate bulk information for the analysis codes. D&E will provide
a host of interactive graphic utilities to assist in "fine tuning" previously
generated data, and effectively display the analysis results. The Postproces-
sor will allow easy generation of additional engineering information from the
basic output files of the analysis codes. The Analysis Module will simply be
a file of available design and analysis computer programs. And, finally, the
Generalized Data Base will provide efficient storage for all geometric and non-
geometric information associated with a particular analysis.

A number of general purpose subroutines are provided to facilitate the
transfer of information to and from the data base. Conversion programs are
written, using these subroutines, to allow each of the major system modules
to communicate with the data base through the Executive Monitor.

COMPUTER ENVIRONMENT

Hardware

The major hardware components include: a CDC 6000 series computer, the
CDC CYBER Graphics terminal (ref. 1), and the CDC System 17 mini-computer. The
System 17 mini-computer is being used to perform a limited amount of local
processing (e.g. continuous 3-D rotation), while the CYBER Graphics terminal is
being used as the primary interface between the host computer and the user.
Within the year, D&E will also be accessible from a Tektronix 4014 scope.

In the more distant future, networking techniques will be used to make D&E
available to the.user community. A part, or all, of D&E will be downloaded
from a central host computer to a mini-computer and used in a local mode. The
current feeling is that networking can provide an effective answer to maintain-
ing large software systems, reduce the time required to streamline these same
systems, and consequently, provide more time for implementing new features.

Software

The code for most routines is FORTRAN, with the exception of a few spe-
cialized routines for character manipulation and permanent file management
which are written in 6000 assembly language. These routines are isolated in
the code and clearly identified. The program uses the CDC segmentation loader
(ref. 2) and operates in less than 60K octal words of core memory on the CDC
6600. Also, a strong emphasis is placed on isolating the graphics code to
reduce the amount of frustration for future implementations of D&E on other
graphics devices. And finally, the DTNSRDC data handler routines (ref. 3) are
being used to manage the data base.
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DATA BASE

The data base provides a convenient mechanism for storing the geometric
model and all related information, including the analysis results. Function-
ally, the data base is composed of the following four levels: structures,
substructures, elements and nodes (fig. 2). This hierarchical concept is
important and is used extensively by D&E. Associated with the individual
items within a level is an attribute list that contains specific information
about each particular entity. The data base handler routines are used to allow
a user to interrogate and modify the data base efficiently and effectively. An
understanding of these basic concepts is all that is required to use D&E effec-
tively.

DISPLAY AND EDIT FEATURES

The power and flexibility of D&E can best be characterized by simply
defining the discrete capabilities of the module. To put some order into the
litany of features that is about to follow, they will be grouped into these
broader categories: (a) Substructure Definition, (b) Displaying the Input
Model, (c) Picture Manipulation, (d) Displaying the Results, (e) Editing, and
(f) Global Commands. The actual mechanics of the interactive process are con-
tained in a command tree (ref. 4). The command tree structures the user's
options, and allows the user to systematically progress through the D&E capa-
bilities. Examples of these capabilities-are illustrated in figure 3.

Substructure Definition

A substructure is defined as any arbitrary collection of nodes and ele-
ments that are present in the data base. The actual definition of a particular
substructure is left completely to the user, and is used by him to improve his
visual interpretation, and interaction, with that portion of the model in which
he is most interested. A substructure can be defined using one, or more, of
the following features:

a. Specifying a range of element/node numbers.

b. Specifying individual elements/nodes.

c. Specifying a range of values for any attribute.

d. Merging two or more substructures to form a new substructure.

e. Identifying geometric bounds.

Geometric specified bounds are defined using keyboard entries to specify an
area or volume in either rectangular, cylindrical, or spherical coordinates.
In a more limited sense, the lightpen can also be used to define the desired
area or volume.
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Displaying the Input Model

The input model can be viewed in one of three ways: in two-space (2D), in
three-space rotatable (3DR), or in three-space non-rotatable (3DNR). The dis-
tinction between 2D and 3D is obvious. However, a 3D model can be displayed as
a 2D model and vice versa. If the third coordinate is present in 2D, it will
be ignored, and if absent in 3D, it will be given a default value of zero. 3DR
and 3DNR present a more subtle distinction. The basic difference lies in where
the 3D to 2D projection is carried out. The CYBER Graphics terminal features
software (ref. 5) that will project a model using its mini-computer controller
to describe the picture. The small core memory of the controller severely
limits the size of the display. In the 3DNR mode the same projection is
carried out on the host computer. Consequently, it is possible to display
approximately twice the information in 3DNR as it is in 3DR. The tradeoff is
that it takes longer to generate the picture in the 3DNR mode. Therefore, the
3DNR mode is used only when the 3DR mode would generate too much information.

In addition to displaying the actual geometry, all of the attributes asso-
ciated with each entity can be displayed as alphameric or vector quantities
superimposed on the geometric model. Examples of alphameric quantities include
geometric and material properties. Examples of vector quantities include
forces, moments and constraints.

Picture Manipulation

Picture manipulation varies from 2D to 3D. The base capabilities of 2D
do, however, apply in exactly the same way for both 3D and 3DNR modes. These
capabilities include:

a. picture zooming and recentering. These functions are performed
through software in the controller and are considered LOCAL to the CYBER
Graphics terminal.

b. generating a split screen view (fig. 3a). Up to four views can be
generated simultaneously using the split screen option. Either a "free" (in
which rotation can still occur) or "freeze" left side can be generated. In
either case, only the main picture can be zoomed or used for lightpen selec-
tion.

c. shrinking elements (fig. 3b). Each element on the screen can be
reduced about its center to 80% of its original size.

d. rescaling the picture. A new scale can be applied to the picture, or
the picture can be scaled to fill the entire screen.

e. restoring the original picture. This option removes the effects of
split screening and shrunk members, and restores the original picture
re-centered.

It should be noted that 3DNR and 3DR have provisions for two more capabilities:
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f. displaying of an X-Y-Z axis system. The axis system is centered in

the middle of the picture and points along the X, Y, Z axes of the model.

g. generating a perspective view.

Finally, 3DR adds a feature its name implies: a capability to rotate around
any of the three screen coordinate axes in a continuous or discrete mode. Con-
tinuous mode provides for automatic updating of the rotation. The discrete
mode allows the user to rotate the model quickly, but in fixed steps.

Displaying the Results

After conducting the analysis, the answers are stored in the data base in
the correct attribute arrays. Four basic capabilities are available to help
the user review his results. They include X-Y plots, contour plots, deformed
plots, and dynamic plots. Of course, the entire complement of picture manipu-
lation capabilities is still available to help the user improve his visual in-
terpretation of the results. As with the input model display section, the user
need not pre-select the results displays he may wish to use.

The X-Y plotting capability (fig. 3c) is very flexible. The user may
interactively activate the following options:

a. line style c. graph style

1. points 1. linear X/linear Y

2. connected points 2. log X/linear Y

3. solid lines 3. linear X/log Y

4. short dashed lines 4. log X/log Y

5. long dashed lines d. titling

b. grid 1. X-axis

1. full grid 2. Y-axis

2. tic marks 3. graph title

As many as ten curves can be generated on each plot. The user may also plot
any attribute in the data base against any other attribute. And, finally,
provisions have been made for automatic rescaling to ensure a reasonable pic-
ture every time.

Contour plots are available for 2-D displays only. As with the X-Y plot-
ting capability, the user has control over the data to be plotted and the
labelling of the graph. Scaling is performed automatically. The user can
select the distance between contours, or use a value supplied by the system,
to generate the contour intervals.
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Deformed plots (fig. 3d) can be displayed alone, or superimposed on an
undeformed plot. Dashed lines are used to easily distinguish the deformed plot
from the undeformed plot. A magnification factor can be applied to the dis-
placements to improve their visual appearance.

The dynamic plot capability is provided to facilitate film strip genera-
tion. In operation, the user need only specify the number of analysis time
steps he wishes to process and the time-length of the film strip. The remain-
ing process is automatic. The user has the option of previewing the informa-
tion on the graphics scope or disposing it directly to an off-line plotting
device.

Editing

Provisions are available to allow a user to easily alter the contents of
the data base. Specifically, it is possible to add, delete, or modify any
value of any attribute list in the data using keyboard entries and lightpen
interaction. In a similar fashion, it is also possible to add or delete sub-
structures, elements and nodes from the same data base.

Certain convenience features have been added to accelerate the editing
process. For example, a user wishing to make the same changes to several dif-
ferent elements can activate the attribute lists of these elements by "picking"
them from the graphics scope using the lightpen. Then, using the keyboard, the
user can enter the new value for the particular attribute he wishes to change.
The system will process this information and ensure that the change is reflec-
ted in each of the activated attribute lists.

Another useful feature is that the user can search a part, or all, of the
data base for a particular value, or range of values, and replace them with a
new one. A final example is that node points can be easily moved about in 2-D
space. This feature is particularly helpful for moving the interior points of
a model. An application of this feature could be to improve the aspect ratio
of certain elements in a 2-D model.

GLOBAL Commands

GLOBAL commands initialize features that are accessible to the user any
time during his session. Because these features will be made available to the
user in other STAGING modules, they will eventually be included as features of
the Executive Monitor. GLOBAL features that are currently available include:

a. STOP - the stop option ends execution of the user session. The option
must be "picked" twice to actually stop. The first "pick" reminds the user
that the new data base has not been automatically catalogued.

b. SAVE DATA BASE - the current data base can be saved in one of two
ways. First, it is possible to overwrite the original copy of the data base.
In this case, the contents of the old file will be purged automatically and the
new data base will be catalogued with the same file name. The second option is
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to enter a new copy of the file name by entering a new permanent file name, or
cycle number. This new name will then become the current permanent file name.

c. CLOCK - this feature allows the user to check on how much time he has
left in his current session.

d. STATISTICS - this feature provides information to the user to help him
track the size of his model. The information includes such things as the num-
ber of nodes, elements, and substructures, and the limit values of the display.

e. HELP - this feature can be used to provide further definition of the
"pickable" options available to the user. It can also be used to display the
options at the next level up and the next level down in the command tree. And
finally, the HELP feature can be used to display the history of "picks" a user
has made to get from the top of the command tree down to his current level.

f. HARDCOPY - the CYBER Graphics terminal has no inherent hardcopy capa-
bility because it is a refresh terminal. Consequently, software is provided to
process the current display to a suitable hardcopy device.

g. SKIP - this command is intended for experienced users who know their
way around the command tree. It allows the user to skip up as many levels as
the user has traveled through. The user is cautioned that subroutines normally
called, as he progresses through the normal RETURN mechanism, are not called in
the SKIP mode. Consequently, this feature can cause problems for the inexperi-
enced user later in the session.

h. COMMENT - the comment log is provided to improve communication between
the program developers and the program users. Users are encouraged to use the
log to ask questions, criticize, or make general comments. The comment log is
periodically reviewed by the program developer and has proved to be an effec-
tive mechanism for debugging, and streamlining, the D&E capability.

i. RETURN - this option re-activates the menu for the module the user was
working in before activating the GLOBAL command feature. The only exception is
when input is reauired for type-ins. In this case, RETURN must be "picked" and
the segment re-entered.

j. Error Recovery - occasionally an error will occur that causes the pro-
gram to abort on the host computer. The host will recover the error and ask
the user if he wishes to continue. If the user says yes, the screen will erase
and control will be transferred to that menu from which the abort was initia-
ted.

CONCLUDING REMARKS

The D&E module represents an important first step toward a much more ambi-
tious goal, that goal being to integrate the entire spectrum of design and
analysis computer programs, while maximizing the utility and efficiency of
these same programs. Efforts will continue to be made to streamline the D&E
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module and to add new features to it. But even in this unpolished state, user
reaction has been surprisingly good. This reaction tends to lend further cre-
dence to the old adage that a picture, in the right place and at the right
time, is still worth a thousand words.

The remaining five major STAGING modules are being developed concurrent
with D&E. It is estimated that, within this calendar year, the six major
system modules will be integrated to form the first tangible version of
STAGING.
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(a) An 80-percent shrink shows rod elements.

(b) 4-wai split screen with top, side, front, and
perspective views.

Figure 3.- Four examples of D&E display capabilities.
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SOME CONVERGENCE PROPERTIES OF FINITE ELEMENT APPROXIMATIONS OF

PROBLEMS IN NONLINEAR ELASTICITY WITH MULTI-VALUED SOLUTIONS*

J. T. Oden
Texas Institute for Computational Mechanics

The University of Texas

SUMMARY

Some results of studies of convergence and accuracy of finite element ap-
proximations of certain nonlinear problems encountered in finite elasticity
are presented. A general technique for obtaining error bounds is also de-

scribed together with an existence theorem. Numerical results obtained by
solving a representative problem are also included.

INTRODUCTION

In this note I summarize some recent results obtained on finite element
approximations of certain nonlinear elliptic-boundary-value problems in finite

elasticity. The results I quote here are given in a more elaborate form else-
where. In reference 1, Ricardo Nicolau and I reported some results on a class
of problems in which bifurcations occur. There we consider cases in which,
for a given set of external forces, not only can multiple solutions occur,
but a loss of regularity can apparently result on certain solution paths. A
complete account of these results is to be published in a lengthier article.

The principal features of this work are (1) a priori error estimates and
proofs of convergence of finite element approximations of highly nonlinear

elasticity problems (these estimates are optimal), (2) erroT estimates for
multiple solutions of a nonlinear elliptic problem (these estimates are also
optimal, but the predicated bounds are different for different solution paths),
(3) a discussion of specific numerical results and certain special problems
connected with the numerical analysis of this class of problems.

NOTATION AND PRELIMINARIES

We shall employ the following notations and conventions:

w = (u,v,w) = displacement vector in a material body B, u, v, and w being Che

cartesian components of displacement in the material directions
X, Y, Z.

* This work was supported by the National Science Foundation under Grant ENG-

75-07846.
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Vw = gradient of w

W = strain energy per unit volume of the body in a reference configuration, W
being an appropriately invariant twice-continuously differentiable func-
tion of Vw.

V = V(w,p) = potential of the external forces per unit reference volume, p
being a real loading parameter.

Z= SW/9Vw = stress tensor - Z(w)

U =,space of admissible displacements = {w: f (W + V)dXdYdZ < c; w = 0 on •}

(Here Q is a bounded open set of particles composing the interior of the
body B and K is its boundary)

To indicate various dependences, we also use such notations as E(w),
VV(w,p), etc.

The potential V(w,p) is assumed to be of the form

V(wp) = - (pf,w) + V (w,p)

where pf is a body force term and V (w,p) is nonlinear in w. To simplify
notations, we also introduce the operator

•DV°

"<A(w,p),I)>= (Za Vn7 - 0 ")dXdYdZ~(1)

Then, formally, A is given by

A(w,p) = -DivZ (w) - w (2)

We are concerned with nonlinear boundary-value problems of the following
type: find w C U such that

<A(w,p),ri) = (pf,T) V n ( U (3)

We are particularly concerned with Galerkin approximations of (3). We
introduce a real parameter h, 0 < h < 1, which, of course, corresponds to the
mesh parameter in finite element approximations, and denote { } <h<l a

family of finite-dimensional subspaces of U such that U Uh is dense in U.
O<h<lh
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The Galerkin approximation of (3) then amounts to resolving the following
problem: find wh C Uh such that

<A(Wh,p),Th1 = (pf, 2h) V i1h " Uh (4)

Upon subtracting (4) from (3) evaluated on T1 = qh' we obtain the ortho-
gonality condition: ~

<A(w,p) - A(wh,p),Th,> = 0 V •h C Uh (5)

SOME HYPOTEHSES ON THE STRESS AND POTENTIAL OPERATORS

In many problems in finite elasticity, it appears to be justified to
make hypotheses of the following type concerning the operator A and the space
U:

I. The operator A of (1) maps U into its topological dual U'; U is a
reflexive Banach space with norm j 1HU.

II. The displacement field in the body correspondinig to a given load p
is contained in a space U with stronger topology than U, U being densely and
continuously imbedded in U.

III. The operator A is weakly continuous; i.e. if {w } is any sequencen
converging weakly to w ,then A(wnp) converges weakly to A(wop).

IV. The operator A is coercive; i.e.

<A(w,p) ,w'*
lim ý = +oo (6)

V. A sufficient condition that II holds is that A be a potential opera-
tor with a Gateaux differential DA such that <DA(w +QO(w -w )) ,w -'wn = 0

as n -• cc for any sequence {w I converging weakly to w , V ri C U.

VI. A sufficient condition for coerciveness is that there exists a
constant 'p > 0 such that

<A(w',p) - A(w2'P)' W - w ->y°jW - w -(7)

where y is a positive constant and p > 1.
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VII. There exist functions B: U x U -÷IR and C: U x U -+R, B weakly con-

tinuous, such that V wl,w 2 ,w 3 C U,

]<A(wl,p) - A(w 2 ,P),W3 )] <_ w3 ]U w - w20 uB(Wl,W2) (8)

I<A(wIp) - A(w 2 'P)' Wl -w - Y W - w2I IU (9)

where y is a positive constant and p > 0.

Theorem 1 (Existence). Let either of the following hold:

(i) Conditions I, III, and IV above, or

(ii) Conditions I, IV, and V, or

(iii) Conditions I, III, and VI, or

(iv) Conditions I, IV, and VI.

Then there exists at least one vector w (- U that satisfies (3) for each
p! ( U'..

We emphasize that the operator A is not necessarily monotone.

FINITE ELEMENT APPROXIMATIONS AND ERROR BOUNDS

The subspaces Uh in (4) are assumed to be constructed using finite ele-

ment methods. Thus, the solution domain Q is partitioned into E subdomains
Q over which w is approximated by piecewise polynomials of degree < k. Ife ,

w~C U - U and fh is its projection into Uh, it is well known that the subspace

Uh can be designed so that the following hold:

h (i)

11w h _< C hG11wIK^ (10)
UU

h being the mesh parameter and 0 a positive number.

(ii)

< Ch , v> 0 (11)

U
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In (10) and (11), C and C1 are constants independent of h.

We proceed to determine error bounds as follows:

1. The approximation error is e = w - Wh:

HeHl u< 11w - hllu + ]]wh - WhU (by the triangle inequality)

< Coha7 1w] U + 11!h -whl'U (by (10))

2.
-h C2 IV!hh- h P (by (11))

< C1 hV 1/yI(A(Wh,P) - A(ýh,p),Wh - rh>' (by (9))

= C 1 1/y hVI<A(w,p) - A(7h;p),Wh - rh>' (by (5))

C1B~ I w - hV (by (8))

- y- -h -h -N ý uhllW W- U

3. For sufficiently small h, we assume that

B(w,Wh) = B(w,wh - w + w)

= B(w,w) + O(h ) i > 0 (12)

owing to the continuity of B(-,'). Thus

CCo

)h + jwV I B(w) (13)

by virtue of (10), wherein B(w) = B(w,w).

4. Combining the result 1 with (13), we see that as h ÷ 0, a positive

constant C2 exists such that
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I elI < C21 lw1(h + h+V B(w)) (14)

Thus, for sufficiently smooth w, we obtain the optimal rate of conver-
gence for the nonlinear problem so long as V > 0.

Theorem 2. Let (8), (9), and (13) hold and let there exist solutions
to the nonlinear boundary-value problem (3). Let wh C Uh be a finite element

approximation of w in a subspace Uh in possessing properties (10) and (11).

Then the approximation error e = w - wh satisfies the bound (14) as h - 0.

Moreover, if V > 0 and w is sufficiently smooth, the optimal rate of conver-
gence is obtained for the nonlinear problem.

AN EXAMPLE AND NUMERICAL EXPERIMENTS

The following example is described in [1]:

W = -EolnA + El(1 2 +v2 -l)+E2 (2+v'2 - 1)2 + E3(X2+v' 2 - 2) + E4(X - 1)

(15)
1 3

V = - pu + - Kopv (16)

where X 1 + u' (u = u(x), v = v(x)), E ,0.,E , K are constants, and p > 0,
In this case,

1. U = {(uv): J (W + V)dX < 4} 4 (1)

W4(1) = Reflexive Sobolev space = {(uv): JL (ju 4 + iv' 4)dx <

u(0) = u(L) = v(0) v(L) = 0}.

HlwlII = IHull( + Ivilol 1 lull'4 dx}¼ + {fL v'14 dx}4

W 4 (1) N4 (I)

[1= u14 + Ivil 41

1U w(i) W (I)
4 4

3. U = W 4 (I) W (I) I = (0,L)

4. p = 4, O = min(k,/-l), v = 3/2
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The functions B(w,w) and C(w,,w) are complicated functions of the compo-
nents u and v and are given in [1]. In this case, the operator A is not mono-
tone.

Test problems were solved using piecewise linear finite element (k = 1).
The problem does not have unique solutions for p > p cr Figure 1 shows the

computed solutions for various values of p for the case L = 10, E1 = 1,
E2 = 0.8, E3 = 0.5, E 3 =-0.1, E4 = -0.2, Ko = 1.0. Observe that a bifurcation

is reached at p = 0.5.

Figure 2 shows the rate of convergence actually obtained in the analysis
computed by comparing the solution for coarse meshes with that obtained for
100 elements. As predicted, the rate of convergence is

0(hC + ha+) = 0(h + h 5/2) =O(h)
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ABSTRACT

This paper extends an analysis of plastic stress waves, originated by G.
I. Taylor in reference 1, for cylindrical metallic projectile in impact to an
analysis of a hemispherical shell suffering plastic deformation during the
process of impact. In that, it is assumed that the hemispherical shell with a
prescribed launch velocity impinges a fixed rigid sphere of diameter equal to
the internal diameter of the shell. Particularly this study is directed in
order to investigate the dynamic biaxial state of stress present in the shell
during deformation.

The results of this analysis are compared with Taylor's reference 1 and it
has been found that this analysis is an extension of the one-dimensional
analyses of references 1, 2, 3, and 4, to spherical coordinates. It is valuable
for studying the state of stress during large plastic deformation of a hemi-
spherical shell.

INTRODUCTION

The object of this paper is to develop an analysis of plastic hemispheri-
cal stress-wave propagation and to use this analysis for determining the
dynamic biaxial yield stress. TheTresca yield criteria is used as the yield
condition. Higher order terms are included in the derivations; thus, this
analysis is valid for large deformations.

G. I. Taylor in reference 1 used the governing physical laws and the
geometry during plastic deformation of the cylindrical projectile to formulate
differential equations which are solved in order to determine the dynamic yield
stress in impact. This analysis of a hemispherical shell impacting a fixed
rigid sphere, of diameter equal to the internal diameter of the shell, is
similar to the analysis of a cylindrical projectile impacting a rigid target of
references 1, 2, 3, and 4. In fact, in all these cases during impact it is
assumed that when the stress rise exceeds the elastic limit of the material,
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two waves are generated. The first of these is the elastic wave, which travels
with a velocity c. It is followed by the plastic stress wave which travels
with a slower velocity v. Through an analysis of the propagation of these two
stress waves, a method is formed which can be used to determine the dynamic
yield stress of the material of a hemispherical shell. The proper choice of
the time increment, dt, simplifies the analysis greatly. The choice is to make
the time increment equal to the length of time required for the elastic wave to
complete a double passage of the elastic zone. If the difference equations are
derived by utilizing this time increment, which is eliminated by combining the
derived difference equations, the governing equations which are derived are
free of this time increment. This mathematical approach, for the biaxial state
of stress of the hemispherical shell, closely parallels Taylor's analysis of
the cylindrical projectile.

NOMENCLATURE

A Projection at the elastic-plastic boundary undeformed area at time t0

A Projection at the elastic-plastic boundary deformed area at time t + dt

a Initial inside radius

b Initial outside radius

c Elastic wave velocity

dh Incremental plastic radius

dr Incremental elastic radius

dt Time for a double passage of elastic region by elastic wave

E Young's modulus

h Thickness of plastic region at time t

r Initial elastic length of shell in the radial direction = b - a0

* 1 Final total length of shell in the radial direction

r Thickness of shell in the elastic zone at time t

R Final thickness of the elastic region

S Dynamic yield stress - calculated by the approximate method

S Dynamic yield stress - calculated by the exact method

t Time
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U Initial radial velocity due to launch velocity

u Particle velocity in the elastic region

v Absolute velocity of the plastic wave front

Y Yield stress in uniaxial tension

£1 Initial radial strain

s Radial strain at time t

p Density

V Poisson's ratio

ANALYSIS

Problem Description

A hemispherical metallic shell strikes with a prescribed velocity a rigid

sphere (of diameter equal to the internal diameter of the shell) which is

permanently fixed at a base retaining zero velocity during the process of

impact. During this impact, a radial motion is directed from the internal sur-

face of the shell toward the external surface of the same. The radial particle

velocity of the internal surface of the shell is initially the same as the

impact velocity and is denoted by U. If the biaxial stress exceeds the elastic

limit, two waves are generated at the internal surface of the shell. The first

wave is the elastic wave which travels with velocity c. The second is the

plastic wave which travels with velocity v. The elastic compressive stress

wave, which propagates radially outward in the elastic region with velocity c,

willireduce the impact velocity U to U-(S/pc). During this time, the stress

reaches the elastic limit. This elastic wave will reflect at the external

surface of the sphere, resulting in an elastic tensile wave being superposed on

the compressive elastic wave. The material which has been passed by this re-

flected elastic wave is stress free and has a velocity equal to U-(2S/pc). At

the particular time when this wave reaches the elastic-plastic boundary, the

shell is in a condition similar to the initial impact, except that its speed

is equal to U-(2S/pc) and its elastic thickness is less than the original value.
At this time, it is assumed that the plastically deformed material will be

attached to the sphere and acts on the elastic part of the shell as a rigid

material. This continues until the speed of the shell becomes equal to zero.
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Assumptions

In order to work out the mathematical analysis of this problem, several
basic assumptions are needed.

First, for axially symmetrical analysis, the shell must be symmetric with
respect to its axis of symmetry and maintain this symmetry during the process
of impact. The second assumption is that the elastic strain is negligible.
This assumption is valid if the plastic strain is large, thus making the elas-
tic strain very small in comparison with the plastic strain. Along the same
lines as the previous assumption, the third assumption is that the material is
taken to be perfectly plastic. Although no material behaves exactly in a
perfectly plastic manner, some materials approach this type of behavior at high
strain rates. This dynamic-plastic stress-wave analysis is for extremely high
strain rates. Thus it is possible to assume that the material is perfectly
plastic without the loss of much generality in the solution. The fourth
assumption, which is usually made in plasticity problems, is that the density
of the shell material remains constant. The fifth and final assumption is
that the material in the plastic region, after being deformed, does not possess
elastic properties; thus it behaves as a rigid material with zero velocity.

Physical Laws

By considering the problem description, and assumptions, the governing
physical laws can be formulated.

Choose the time increment, dt, to be equal to the time required for a
complete double passage of the elastic wave through the elastic region. Since
the length of material in the elastic zone is defined as r and the elastic wave
velocity is c, it follows that

dt = 2r/c (i)

where

c = {E (1 - v)/ {p(l + v)(1 - 2v)}}l/2

dh = v (2r/c) (2)

dr = -(u + v) (2r/c) (3)

du = - 2S/(pc) (4)

Using equation (1) to eliminate c from equations (2), (3), and (4) results in

d v (5)

dr = (U + v) (6)
dt

566



du = _ S/(pr) (7)
dt

for conservation of mass

A v = (u + v) A (8)

The momentum equation reduces to

S (A - A 1/2(A + A ) (u + v) u p (9)
0 0

The radial strain is defined, at the plastic boundary, by

E = 1 - A/A (10)

Combining equations (8), (9), and (10)

pu 2 /S = 2 62/(2 - s) (11)

Combining equations (6), (7), (8), and (10)

dr = pur/(Ss) (12)
du

Integrating equation (12)

Log e(r 2 ) = f 1/c d{s 2 /(l -c/2)1

= 4/(2 - E) - 2 Loge (1- c/2) + Constant (13)

At time t = 0, u = U, r = r , and e =e thus equation (11) and equation

(13) become, respectively 0

pU 2 /S = 2 E2 /(2 - E ) (14)
1 1

Loge(r/ro) 2 =-4/(2 - s) - 2 Loge (1 - s/2) 4 4/(2 - £1

+ 2 Log (1 - /2) (15)
e 1

When all motion has ceased, r = R, and = 0, and R can be measured.

Loge(R/ro) 2 =2- 4/(2 -.* ) + 2 Loge(1 - E /2) (16)
1 . 1

Combining equations (5), (6), (8) and (10)

h = fdh = r (1- c). dr (17)

0
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Combining equations (7), (ii), and (14)

Ut/r° (i 1 /2)-1/2 f1r/ro ( - c/4)/(l - 6/2) 32dE (18)

If uniformly spaced values of el are placed in equations (14) and (16),
pU 2 /S vs R/r can be plotted. Evaluation of equation (17) for h is accomp-

0 O
lished by Simpson s rule integration. Results of these calculations are
plotted in Figure 1.

Two different methods of integration were employed to evaluate the inte-
gral equations (17) and (18). The first method used was a Simpson's rule
integration. Results for various 6 1 are plotted in Figure 2.

The second method of integration was using the asymptotic expansion of
the integrals. References 5, 6, and 7 provide information on asymptotic
power-series expansions. Values obtained by asymptotic expansion agreed well
with those obtained by Simpson's rule integration.

To develop a simple formula for calculating the dynamic yield stress from
measurements made before and after the impact, it will be additionally assumed
that the plastic boundary propagates at a constant velocity from the inside
radius a to its final position. The velocity of the plastic boundary equals C.

Combining equations (6) and (7)

du
dTu S/{pr(u + C)} (19)

Integrating equation (19) results in

S/p Loge (r/r ) = 1/2u2 + C u - 1/2U2 
- C U (20)

When u = 0, r = R and equation (20) becomes

S/p Loge (R/ro) = - 1/2U2 
- C U (21)

At time t = 0, u = U. Assuming u decreases to zero uniformly with time,
in a time equal to T

T = (r - R)/C = 2(r - r )/U
1 0 1

Rearranging C/U = 1/2 (r - R)/(r - r
1 0 1

Therefore, equation (21) becomes

S /pU 2 = (r 0 R)/[2(r - r ) Loge (r°/R)] (22)

The fact that the decrease in u is not uniform results in an error which
can be calculated. Combining equations (3) and (20)
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2
d = 2S/p Log (r/ro) + (U + C) 2  (23)
dto

When all motion has ceased, u = 0, r = R, and e = 0. Therefore, equation (21)
becomes

2S/p Loge (R/ro) = C2 
- (U + C)2 (24)

Letting 2S/p = a 2

K = (U + C)/a
Ri = r/r°

t= at/ro

Ti aT/r

where T is the time from the initial impact until the plastic zone velocity
equals zero

dR- = (K2 + Loge RI)

dt 1

so that

T f = (K2 +-Loge R1 d/ (25)P[ 2 2]e_ dRK

Letting
Z2 = K2 + Loge R,

results in K

= K2 ez2 dZ (26)

-C/a

-K2  KeZ

Values of F(K) = e f e dZ have been tabulated in references 5 and
J

6. Equation (26) can be 0 expanded using this function, F(K), to give

T, = 2 {F(K) - Exp (-K 2 + (C/a)2) F(C/a)} (27)

Previously it was assumed that the plastic boundary moves with a constant
velocity C, or

CTr= -R
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or in dimensionless form

C/a T1 = rl/r° - R/r (28)

Rearranging, equation (24) becomes

Loge (ro/R) = K2 
- (C/a) 2  (29)

Since R/r, and rl/r can be measured, C/a, U/a, K and T can be evaluated
from equations (27), (28), (29), and

K = U/a + C/a (30)

Combining equations (27), (28), and (29)

r /r 2 C/a F(K) - {2 C/a F(C/a) - 1} R/r (31)
10 0

Since

2S/pU2 = a2 /U 2 = l/(K - C/a) 2

dividing this equation by equation (22) therefore results in

S/S = (r - r )/(r - R) [Loge (ro/R)/(K - C/a) 2 ] (32)
1 1 [Lg r//(

Due to the complexity of these equations, the correction factor, S/SI,
cannot be determined directly. To determine S/S 1 given R/r and rl/r it is
easiest to first form the curves of S/S 1 vs rl/r° with contours of equal h/r
Values for this curve can be obtained by taking a value of R/r and values o?
C/a which cover the desired range. Therefore, using equation ý29), equations
(31) and (32) can be evaluated.

The asymptotic expansion of F(K) is

F(K) = 1/(2K) + 1/(4K3 ) + 3/(8K5 ) + 15/(16K7 ) + ... (33)

Through some complex manipulations, it can be shown, although it will not
be presented here, that as C/a ÷

rl/r 0 1.0 (34)
0

and

S/S1 = 2 {l/(1 - R/ro) - i/(Loge(ro/R))} (35)

From this equation, the limiting values of S/S1 can be determined as
rl/r° 0 1.0.

This completes the analysis of the problem. Thus, if values of r , rl,
and h are given, the dynamic yield stress can be calculated for the hemispheri-
cal shell.
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DISCUSSION AND CONCLUDING REMARKS

In this paper, a method is developed to investigate the propagation of
plastic stress waves in a hemispherical shell. In particular, this study
investigates the dynamic yield stress due to the impulsive loading initiated
at the interface of the shell. This mathematical approach, for determining
the biaxial state of stress of the hemispherical shell, closely parallels
Taylor's analysis of the cylindrical projectile. It is interesting to note
that if all higher order terms were dropped from this analysis, the results
would be the same as those of reference 1 except that the components are
defined differently. Graphs which are drawn from this analysis in Figures 1
and 2 are similar to Figures 2 and 3 of reference 1. In addition, comparison
between the results of this analysis and the analysis of reference 1 is
possible. In fact, when these two analyses are compared, one can observe that
the results of the present work parallel the experimental data more closely
than the results of reference 1. This is due to the fact that one-dimensional
analysis may not possibly explain the spreading out of the projectile near the
target. This phenomenon requires taking into account the inertia in the radial
direction.

The derivation of the yield stress correction factor is almost identical
with the results of reference 1 on page 297. Singularities were observed
which were not discussed in reference 1. The discontinuities occurred just
before rl/r - 1.0. If the discontinuity is ignored, the results are similar
to those of reference 1.

A method has been presented by which the dynamic yield stress can be
calculated, using the Tresca yield criteria, from the radial expansion of a
hemispherical shell. The approximate yield stress can be calculated from
equation (22), if the initial conditions, final conditions, U, and p are
specified. The dynamic yield stress could also be calculated from Figure 1.
Thus, the dynamic yield stress can be determined if certain initial and final
experimental conditions are specified, including the launch velocity, density,
and geometrical considerations of the shell. The motion of the plastic
boundary, as shown in Figure 2, is similar to the results obtained in Figure 4
of reference 8. Their choice of coordinates is different, which accounts for
many of the differences between the shape of their curve and of Figure 2.

571



REFERENCES

1. Taylor, G. I., "The Use of Flat-ended Projectiles for Determining Dynamic
Yield Stress", I: Theoretical Considerations, Proceedings of the
Royal Society, London, England, Series A., Vol. 194.

2. Raftopoulos, D. and Davids N., "Elasto-Plastic Impact on Rigid Targets"
AIAA Journal, July 5, 1967, pp. 2254-2260.

3. Raftopoulos, D. "Longitudinal Impact of Two Mutually Plastically-Deformable
Missiles", Int. Journal of Solids and Structures - Vol. 5, No. 4,
pp. 399-412, 1969.

4. Raftopoulos, D. and Al-Salihi, M. "Direct Analysis of Elasto-Plastic Wave
Interaction in Impact", Proceeding of the llth Midwstern Mechanics
Conference, Vol. 5, 1969.

5. Jeffreys, Harold and Jeffreys, Bertha Swirles, Methods of Mathematical
Physics, University Press, Cambridge, 1950, pp. 498-528.

6. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, edited by Milton Abramowitz and Irene A. Stegun, United

States Department of Commerce, 1964, pp. 319-320.

7. Wosow, Wolfgang, Asymptotic Expansions for Ordinary Differential Equations,
New York - John Wiley & Sons, Inc., 1965, p. 31.

8. Davids, N., Mehta, P. K., and Johnson, 0. T., "Spherical Elasto-Plastic
Waves in Materials". Colloquium on "Behavior of Materials Under
Dynamic Loading", ASME Winter Annual Meeting, Chicago, November 9,
1965, pp. 125-137.

572



Nr

00

"0

N -0 0

oc

o *o

t 0

o ro

0 T

J J 4iw

- , - - 0 .J 9 q - c

0 Q)d

-- Al (Ar 0) 414

/l 0) i-O 4-)

-~ -- -CJL.)O -c z w w Ir U
0) /- to ~ in*, CM0 _

6_ 0_ 0 0 0 J_

>- rJw 0) U .4.
Ic r- 4

rl ~
___0 P 0 MiLi

LiJ 225u3



LARGE DEFLECTIONS OF A SHALLOW CONICAL MEMBRANE

Wen-Hu Chang and John Peddieson, Jr.
Tennessee Technological University

SUMMARY

This work is concerned with large deflections of a shallow elastic conical
membrane fixed at the outer edge and loaded by either uniform or hydrostatic
pressure. The governing equations were solved by the method of matched asymp-
totic expansions and by a finite-difference method. Agreement between the two
methods was excellent for the small values of the perturbation parameter.

INTRODUCTION

This paper is concerned with the moderately large axisymmetric deformation
of a shallow elastic conical membrane. The purpose of this work is to further
investigate the application of the method of matched asymptotic expansions (see
Van Dyke, reference 1) to the solution of membrane-shell problems involving
large deflections. The success of this method is based on the fact that for
small loads the linear membrane solution is a good approximation to the actual
solution everywhere except in the immediate vicinity of boundaries. In these
regions thin boundary layers exist where the variables undergo rapid changes to
accommodate themselves to the boundary conditions that cannot be satisfied by
the linear membrane solution. In the method of matched asymptotic expansions
separate perturbation expansions are found in the interior and boundary-layer
regions and matched in an appropriate way to insure that they join smoothly.

Bromberg and Stoker (ref. 2) initiated this type of analpsis of membrane
shells when they found one term of both the interior and boundary-layer expan-
sions for a uniformly pressurized shallow spherical shell. The next two terms
in the interior and boundary-layer expansions were found by Smith, Peddieson,
and Chung (ref. 3) and used by them to investigate the accuracy of finite-
difference solutions of the same problem. One term of the interior and boundary-
layer expansions for deep membranes of arbitrary shape has been given by
Rossettos (ref. 4). This work generalizes the results given in the references
listed in reference 4.

In the present paper three terms of the interior and boundary-layer expan-
sions are found for the case of a shallow conical membrane loaded by either
uniform or hydrostatic pressure. Ii is found that complications arise which do
not appear in the solution of the corresponding sphere problem. The solution
method is modified somewhat to account for this. Numerical results are pre-
sented to illustrate some of the interesting features of the solution.
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GOVERNING EQUATIONS

Consider a shallow conical membrane (opening upward) with base radius a,
thickness h, and initial angle ýo with the horizontal made of a linearly elastic
material with modulus of elasticity E and Poisson's ratio v. The equations gov-
erning moderately large axisymmetric deflections of such a structure can be
obtained from the work of Reissner (ref. 5). The resulting equations are (in
dimensionless form)

P" + k'/r - i/r 2 + (l-+s2 /2)(r/r) = 0

(I+C2ý)= rV

Nr = /r, N = '

u = rw' - VO, w' M 0 (1)

where ar is the radial coordinate, V0a0/ýo is a stress function (Vo being a
characteristic vertical force resultant), VoV is the vertical force resultant,
VoNr/Po is the radial stress resultant, VoNe/ýo is the transverse stress resul-
tant, c is a load parameter, ac2c u is the horizontal displacement, a~o 2w is
the vertical displacement, ýos20 is the rotation, and a prime denotes differen-
tiation with respect to r.

In the present paper a uniform pressure Po and a hydrostatic loading
Yoioa(l-r) are considered. It can be shown by considering the vertical equi-
librium of the membrane centered on the vertex and having radius r that

V = r/2 - jr 2 /3 (2)

where j = 0 for the uniform pressure and j = 1 for the hydrostatic pressure.
The characteristic vertical force resultant is given by

poa j j0
V =
0 (Ya21 0 : 

(3)

The load parameter £ is defined to be

£ : (Vo/EhP)½1 (4)

In the present work it is desired to solve equations (1) subject to the
boundary conditions

u(1) = w(l) = 0 (5)

Special attention will be given to situations where s << 1.
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STRAIGHTFORWARD SOLUTION

To begin the solution process a straightforward perturbation solution to

equations (1) is sought for 6 << 1. To do this it is convenient to rearrange
equations (la) and (ib) to yield

C2(ý,, + i'/r - p/r 2 ) - (1 - (rV/i) 2 )/(2r) = 0

6 = (rV/i - 1)/c2 (6)

A straightforward perturbation solution for e << 1 has the form

s %sO + cSl + 62s2 + ... (7)

where the subscript s indicates the straightforward solution. Substituting
equation (7) into equation (6a), expanding for c << i, setting the coefficient
of each power of s equal to zero in the usual way, and solving the resulting
algebraic equations yields

%s % (r 2 /2 - jr 3 /3) + E2 (r 2 /2 - jr 3 /3)(3r/2

- 8jr 2 /3) + s4(r 2 /2 - jr 3 /3)(75r 2 /8

- j(79r 3 /2 - 32r4)) + . . . (8)

From equations (1) and (6b) it can then be shown that

Nrs , (r/2 - jr 2 /3) + s 2 (r/2 - jr 2 /3)(3r/2

- 8jrz/3) + s14 (r/2 - jr2/3)(75r 2 /8

- j(79r 3 /2 - 32r4)) + .

N e (r - jr 2 ) + £ 2 (9r 2//4 - j(22r 3/3 - 40r 4/9))0s

+ s4(75r 3/ /4 - j(915r 4 /8 - 175r5

+ 224r 6 /3)) + . .

Is A-(3r/2 - 8jr 2 /3) - F2 (57r 2/8

- j(63r3/2 - 224r 4/9)) +

us (1 - v/2)r 2 - j(l - v/3)r 3 + E2(3(3- v)r 3//4

- j(ll(4 - v)r4/6 - 8(5 - v)r 5 /9))

+ E4(75(4 - v)r4/ 1 6 - j(183(5- )r/8

- 175(6 - v)r 6 /6 + 32(7 - v)r 7 /3)) + ±
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w s -3(r 2 - 1)/4 + j8(r 3 - 1)/9 - 6 2 (19(r 3 
- 1)/8

- j(63(r4 - 1)/8 - 224(r4 - 1)/45)) + . (9)

where equation (5b) has been used to determine the constants of integration in
equation (9c). By comparison with the results given in Kraus (ref. 6) it can
be seen that the first term in each series expansion is the linear membrane
solution. It should also be noted that the first terms in equations (9d) and

(9e) are due to the second term in equation (8). Thus to obtain 6 and w to
0(C 2 ) it is necessary to find is to 0(s4). The boundary condition represented
by equation (5a) cannot be satisfied by equation (9d). Thus a boundary-layer

expansion is needed in the vicinity of r = 1.

BOUNDARY-LAYER SOLUTION

There are several ways to carry out the boundary-layer analysis in this

problem. One is to work in terms of the original stress function i. If this
is done the differential equation for the first boundary-layer approximation
turns out to be nonlinear. Bromberg and Stoker (ref. 2) discovered that a
linear equation could be obtained in the first approximation for a spherical
membrane by a method which is equivalent to working with a dependent variable
which is the difference between the actual and the linear stress functions.
This was tried in the present problem but matching difficulties were encountered.
These were due to the fact that equations (8) and (9) do not terminate with one

term for the cone as the corresponding straightforward expansions do for a
sphere. It was, therefore, decided to use the difference between the actual
stress function and the straightforward stress function as the dependent vari-
able. This guarantees that the outer expansion for this dependent variable will
be zero. Thus it is necessary to find only the inner expansion.

Substituting

S= ý s + -b (10)

(where the subscript b denotes the boundary-layer solution) into equation
(6), defining the boundary-layer variables F and $ by the equations

ýb = 6F, r = 1 - s, (11)

expanding F as

F % F0 + sFI + c2F + "' (12)

and carrying out the usual perturbation analysis yields

F0 - S2 F0 = 0 (13)

and two other equations governing F1 and F 2 where

S = (6/(3 - 2j)) 2  (14)
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In equation (13) () d( )/dý. Define Nrb, Neb, ýb, Ub, and wb by the follow-
ing equations

Nr N + ENrb

rs Nrb = Nas + N6b

= s + Qb/c' U = us + ub, w = Ws + wb (15)

Now expand as follows

SAb0 + - -l + E2 Ab2 + • (16)

where Ab is any one of the boundary-layer variables. Substituting equations
(10), (11), (12), (15), and (16) into equations (1),expanding for C << 1, and
equating the coefficients of like powers of c to zero one obtains

Nrbo F0, N = -0' b0 = - 02 F

Ubo F0, Wb0  S2 OF0 dý (17)

and two similar sets of equations relating AS and A 2 to F , F , and F Abl_ b2 0 1 . . 2"
similar procedure applied to equation (5a) leads to toundary condition

0 (0) = 1 - j - (1/2 - j/3)v (18)0

and boundary conditions for F (0) and F 2(0).

To illustrate the solution procedure the first approximation will now be
carried out in detail. The solution of equation (13) is easily seen to be

F0 = cI exp(Sý) + c2 exp(-S) (19)

Since the outer expansion has been forced to vanish because of equation (10)
the matching process (see Van Dyke, reference 1) is equivalent in this case to
a statement that positive exponential terms must vanish. Thus

c 0 = 0 (20)

Substituting equations (19) and (20) into equation (18) yields

c2 = -(I - j - (1/2 - j/3)v)/S (21)

Thus

F0 = -(l - j -(1/2 - j/3)v)exp(-Sý)/S (22)

Substituting equation (22) into equations (17) one obtains

Nrb0 = -(1 - j -(1/2 - j/3)v)exp(-S1)/S

NObo = ( U - j - (1/2 - j/3)v )exp (-S E)
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bo = (- j - (1/2 - j/3)v)S exp(-SE)

Ub -( - j - (1/2 - j/3)v)exp(-SC)

Wbo -(i - j - (1/2 - j/3)v)(l - exp(-SC)) (23)

The results for higher approximations are found in a similar way but the calcu-
lations are quite lengthy. For the sake of brevity this work is omitted.

To find the complete solution the boundary-layer expansions must be added
to the corresponding straightforward expansions. The first approximations to
these expressions are

ý0 = r2/2 - jr 3 /3 - c(l - j - (1/2 - j/3)v)exp(-S(l - r)/c)/S

Nr0 = r/2 - jr 2 /3 - E(l - j - (1/2 - j/3)v)exp(-S(l - r)/c)/S

N 0 = r - jr 2 + (l - j - (1/2 - j/3)v)exp(-S(l - r)/)

ý0 = (1 - j - (1/2 - j/3)v)S exp(-S(l - r)Ic)IE

u0 = (1 - v/2)r 2 - j(l - v/3)r 3 
- (1 - j

- (1/2 - j/3)v)exp(-S(l - r)/C)

w = 3(1 - r 2 )/4 - 8j(l - r 3 )/9 - (1 - j0

- (1/2 - j/3)v)(! - exp(-S(l - r)/l)) (24)

In writing equations (24) the boundary-layer solution was treated as the funda-
mental expansion. All terms in the straightforward expansion with magnitude
equal to or greater than the first term in the boundary-layer expansion were
added to this term to form the first approximation. The same method was used
to obtain the second and third approximations.

RESULTS AND DISCUSSION

Numerical results were computed for the first, second, and third approxi-
mations to the variables 4, Nr, No, B, u, and w. These calculations were made
for a variety of values of the load parameter c and Poisson's ratio v. To
evaluate the accuracy of the perturbation method, selected cases were compared
with numerical solutions to equation (6a) obtained by the finite-difference
method discussed by Smith, Peddieson, and Chung (ref. 3). It was found that
the third approximation to the perturbation solution agreed with the finite-
difference results up to c = 0.1. It should be pointed out that for small
values of , the numerical method is difficult to apply because a variable
step size must be used near the edge and the optimum arrangement of step sizes
can only be approached by trial and error. The explicit formulas obtained in
the present work are much easier to use for c << 1.
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To illustrate the behavior of the solution some of the computed results
are shown in figures 1 -- 4. For the sake of brevity, data are presented
for only the radial stress resultant Nr, the transverse stress resultant N0 ,
and the vertical deflection w. The solid lines represent the three-term per-
turbation solution while the dashed lines represent the linear membrane solu-
tion. The linear membrane solution is shown only when it differs significantly
from the perturbation solution.

Figures 1 and 2.present results for uniform pressurization (j = 0).
Figure 1 shows that thin boundary layers exist for No and w for E = 0.01
while Nr does not exhibit boundary-layer behavior. As c increases the bound-
ary layers become wider for all variables. This is illustrated by figure 2.
Figures 3 and 4 contain results for hydrostatic loading (j = 1). The para-
metric trends illustrated by these results are identical to those discussed
above but the behavior of the solution variables is more complicated. These
results illustrate the utility of the perturbation method. Complicated func-
tions of this type can be represented numerically only if extreme care is used.

Results were also computed for several other values of v. It was found
that the qualitative behavior of the solution is not significantly influenced
by this parameter.

CONCLUSION

In this paper, the rotationally symmetric moderately large deformation of
a linearly elastic shallow conical membrane subjected to either uniform or
hydrostatic pressure was investigated. A single differential equation having
a stress function as dependent variable was solved by the method of matched
asymptotic expansions. The accuracy of the solution was verified by compari-
son with a finite-difference numerical solution of the governing equation for
the stress function. Selected results were presented graphically to illustrate
interesting features of the solutions.
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A PLANE STRAIN ANALYSIS OF THE BLUNTED CRACK TIP USING

SMALL STRAIN DEFORMATION PLASTICITY THEORY*

J. J. McGowan and C. W. Smith
Virginia Polytechnic Institute and State University

SUMMARY

This paper presents a deformation plasticity analysis of the tip region
of a blunted crack in plane strain. The power hardening material is incompres-

sible both elastically and plastically, in order to simulate behavior of a
stress freezing material above critical temperature. The study represents a
full field, finite difference solution to the Mode I problem. Stress and dis-
placement fields surrounding the crack tip are presented. The results of this
study indicate that the maximum stress seen at the crack tip is indeed limited
and is determined by the tensile properties; however, the scale over which the
stresses act is dependent on the loading. Comparisons are good between the
forward crack tip displacement and micro-fractographic measurements of
"stretch" zones observed in plane strain fracture toughness tests.

INTRODUCTION

In recent years Cherepanov (ref. 1), Rice (ref. 2,3), Hutchinson (ref. 4,
5), and Rice and Rosengren (ref. 6) have shown the asymptotic behavior of
stress and strain fields surrounding sharp crack tips in plane strain. Using
these studies as a guide, full field solutions with finite elements have been
obtained by Levy, Marcal, Ostergren and Rice (ref. 7) and Hilton and Hutchinson
(ref. 8). These two studies give accurate near and far field behavior due to
the inclusion of singular elements reflecting plasticity at the crack tip.
Other numerical solutions by Marcal and King (ref. 9), Mendelson (ref. 10),
Swedlow and coworkers (ref. 11,12) and Tuba (ref. 13) show qualitative features
of the near field, but may not yield accurate stress field definition due to
the large gradients there.

In order to have an accurate description of the near field surrounding
crack tips, and hence a good understanding of the mechanisms of failure,
Rice and Johnson (ref. 14) have pointed out that crack tip blunting must also
be included. Their analysis accounted in an approximate manner for the
blunting at the crack tip and for strain hardening in the plastic zone. As a
result they showed that the stresses near the crack tip are indeed finite and
that the maximum a yy stress occurred at some small distance from the deformed
crack tip. A finite deformation analysis by McGowan and Smith (ref. 15) of
blunted cracks in a linear (stress-strain) incompressible material shows the
same general behavior. The maximum ayy stress occurs in front of the blunted
crack tip and the magnitude is independent of the remote loading.

*This work was supported by the National Science Foundation Engineering

Mechanics Program under Grant No. GK-39922
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The purpose of the present study is to gain a full field solution around
a blunted crack tip in a strain hardening incompressible material under Mode I
loading. This work will provide an accurate description of the stress and de-
formation fields immediately surrounding the blunted tip, and thereby gain
insight to fracture behavior. Deformation theory of plasticity with a Mises
yield condition is used. The resulting set of equations is solved for the
blunted crack tip in the deformed state under load by finite differences.
The linear theory of Inglis (ref. 16) gives the necessary asymptotic boundary
conditions.

An initial goal of the present study was to gain a more complete under-
standing of the near field behavior of stress freezing photoelastic materials
above critical temperature; however, this study should also give considerable
insight to the general behavior of engineering materials under Mode I loading.

SYMBOLS

c One-half crack length E Initial yield strain

E Young's Modulus F Effective plastic strainP

K Stress intensity factor 6T Effective total strain =

c + /E
p e

n Strain hardening exponent p Deformed crack root radius

r,e Cylindrical coordinates measured from V Poisson's ratio
crack tip

T Secant modulus = a /e a.. Stress tensor
e T ij

u. Displacement vector a Hoop stress1 yy

U Strain energy density G Effective stresse

X Distance in front of deformed crack a Tensile yield stress
tip

Y Distance perpendicular to deformed Airy stress function
crack tip

E.,. Strain tensor a Constant in eq. (2)1J

FORMULATION OF THE PROBLEM

Using small strain deformation theory of plasticity for an incompressible
(v= 1/2) material the governing equation for the field can be shown to be:

1 (ý, + + 20 ) + 2(1),(D + ( )
T 2222 ,ill ,1122 Tlilli ,122
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+2 (),22 , 2i2) + (122- 11 [V,22- T (1)

+ 4 (),1 ',2 =0

(The details of this analysis are given in ref. 17)
For this study a Ramberg-Osgood material will be used

E = / + b /[( /o) 1/n 1i
a e -
0

or + ba[(e / n a a (2)
orT e o o e

where b = 0 if a < u
e 0

b=lifa > u
e - o

Thus the governing equation (1) will be solved subject to the constitutive
laws (eq. (2)).

The geometry of the blunted cracks in the deformed state under Mode I
loading will resemble small elliptical perforations as shown in figure 1.
The size of the deformed crack tip root radius will be determined through
integration of the strain displacement relationships

ui,j + uJi = 2:ij

The affected strain hardening region will be divided into a small grid
utilizing elliptical coordinates and the governing set of equations will be
solved through the method of finite differences. At some distance from the
deformed crack tip the linear solution of Inglis (ref. 16) will apply. The
stress at the outer boundary of the inner strain hardening region will be then
matched to the Inglis solution. The outer boundary will be enlarged until
there is no change in the inner stress field. (A detailed description of the
solution procedure is given in ref. 18.)

PRESENTATION OF RESULTS

The stress and displacement fields in the field surrounding a deformed
crack tip in a strain hardening material which is incompressible in both the
elastic and plastic regions are examined. Strain hardening exponents of 0.2
through 0.01 are presented. The range of initial yield strain values is from
0.01 through 0.0001. The value of ot in the effective stress-effective strain
relationship, equation (2), is taken to be 1.0 in this study. (The authors
have found that small changes in a and V do not influence the solution signifi-
cantly.) The "linear" results reported here are those of Inglis (ref. 16) for
a deformed crack tip in a linear material. The "singular" results are those
corresponding to a crack which has no root radius in a linear material.

The plastic zone shape for the smallest ellipse investigated (p = 0.0018
(K/a )2 ) is shown in figure 2. Note that with decreasing hardening (n - 0)

0
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the plastic zone grows in maximum extent and leans progressively in the direc-
tion of crack propagation. For comparison, the singular plastic zone from
McClintock and Irwin (ref. 19) and that of Levy et al (ref. 7) for a non-
hardening (n = 0) material are also shown. As shown by figure 2, the plastic
zone shape predicted by McClintock and Irwin (ref. 19) is approached by the
present study as n - -. The difference between the plastic zone shape pre-
dicted by Levy et al (ref. 7) and the present study for n = 0.01 is primarily
due to the inclusion of blunting effects and use of V of 0.5 in the latter;
the difference should be negligible as 0 -+ 0.

0

The effective stress a is shown versus the distance ahead of the de-
eformed crack tip in figure 3. This figure shows that the effective stress

varies as (rn/n+l)-l in the plastic zone ahead of the tip. (The behavior for
other values of e is similar). It can be shown that the strain energy has the
form:form e -2 [ae](l+n)/n

2EU =[,e + n b [n -i for a power hardening material

0

Therefore, the strain energy varies approximately as 1/r in the plastic zone.
This was a key assumption in the analysis of Rice and Rosengren (ref. 6) and
Hutchinson (ref. 4).

The a yy stress in front of the crack tip is shown for various values of
yield strain for n = 0.01 in figure 4. As shown in this figure, this stress
is substantially reduced near the crack tip because of blunting and strain
hardening, with the maximum value developed at some distance forward of the
crack tip. (The a y stress distributions for other values of n is quite
analogous.) The analysis of Rice and Johnson (ref. 14) gives the same quali-
tative behavior; the correlation is believed to be quite reasonable in view
of the several approximations involved. For a non-hardening material Rice
(ref. 2) has shown that the maximum Gyy stress is 2.97 a0o. This stress, as
predicted by Levy et al (ref. 7), approaches this limit at the crack tip as
shown in figure 4. The ayy stress distribution of the present study in this
figure reflects the presence of blunting and should coincide with the work of
Levy et al (ref. 7) as c -÷ 0.

0

Figure 5 shows the variation of maximum ayy stress with initial yield
strain for varying hardening. As shown in the figure, blunting alone (the
"linear" curve) forces the peak ayy stress to be finite and the inclusion of
finite deformations (ref. 15) reduces the magnitude somewhat. However, the
effects of blunting and plasticity taken together are significant: the peak
Gyy stress is reduced by a factor of 10 from that with blunting alone. From
figure 5, one observes the peak ayy stress to be 3a to 7a0 depending upon n
and ao/E. The peak ayy stress increases with n and decreases with aooE. (The
large value of peak ayy stress compared to the uniaxial yield stress, ao, is
believed due to the presence of triaxiality in the crack tip region.)

The crack tip displacement in the direction of propagation (which is also
the deformed crack root radius, p) is shown in figure 6 for varying initial
yield strain and hardening exponent. The present study predicts that the for-
ward crack tip displacement increases with ao/E and decreases with n. For
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comparison one-half the crack tip opening displacement calculated by Levy (ref.
7) is shown. The forward crack tip displacement as predicted by the present
study and the work of Levy et al (ref. 7) show parallel behavior, although they
are separated by some distance. This disagreement is believed due to the shape
of the crack tip being elliptical in the present study instead of cylindrical.

Included also on figure 6 is the width of the "transition" or "stretch"
zone which exists on the fracture surface between the cracked and the overload
regions in fatigue. As Broek (ref. 20) has discussed, the depth of this tran-
sition zone is the crack tip opening displacement, and, therefore the width is
the tip forward displacement.

Examination of the figure shows the correlation between the forward tip
displacement and failure. The measurements of the stretch zone fall close to
n = 0.2. For the steels and aluminums shown values of n around 0.05 have been
reported in references 20, 21 and 22. However, it is known that for this class
of materials the value of n varies with plastic strain (ref. 23). For large
plastic strain (E > 10%), the strain hardening exponent is close to 0.2 as
shown by Jones ang Brown (ref. 24) for 4340 steel. The strains in the tip
region are clearly greater than 10% so that the agreement between the measure-
ments and the analysis appears quite reasonable. The scatter band shown on
the figure is an indication of the span of actual measurements (authors typi-
cally report a 40% variation).

DISCUSSION

Previously McGowan and Smith (ref. 15) performed a finite deformation
analysis of the region surrounding deformed crack tips for a linear (stress-
strain) material. The results of the finite deformation work showed that the
maximum ayy stress occurred in front of the deformed crack tip. It was deter-
mined that the stress distribution around the crack tip was "similar", in the
sense that one stress distribution could be used to describe the response of
the material under load. The size of the affected zone would depend upon
the load and crack length through K. The self-similarity of the stress field
was a direct result of the blunting process, and would be expected to remain
as long as the affected zone stayed small with respect to the crack length,
thickness, or any other in-plane dimension.

The behavior is quite similar for a power hardening material. The stress
field is self-similar with the size of the affected zone varying with K. The
maximum a yy stress will only then be a function of the material properties
E, n, and ao" The stretching of the similar stress distribution will depend
upon K as well as the other material properties. One may conjecture that
failure would depend upon the growth in size of a critical dimension, such as
plastic zone size, which increases with K.

Wells (ref. 25) and others have used the crack opening displacement as a
fracture criterion. Broek (ref. 20) has used this concept to correlate the
depth of transition zones in aluminum with fracture toughness. The present
study shows good correlation of fracture toughness and transition zone width.
Krafft (ref. 26), Hahn and Rosenfield (ref. 27) and Rice and Johnson (ref. 14)
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have all shown good correlation of plane strain fracture toughness with some

minute particle size or process zone size for specific cases.

SUMMARY AND RECOMMENDATIONS

Following the pioneering studies of Hutchinson (ref. 4), Rice and Rosen-
gren (ref. 6), Levy et al (ref. 7) and Hilton and Hutchinson (ref. 8), the
authors have obtained a full field deformation plasticity finite difference
solution to the Mode I plane strain problem including the effects of blunting.
The material was incompressible in both the elastic and plastic regions, and
followed a power hardening rule. Stress and displacement fields surrounding
the deformed crack tip are presented, and are found to compare favorably both
with the analysis of other investigators as well as experimental results. Be-
cause of the improved accuracy expected from a full field solution, it would
be appropriate to incorporate such a solution into theories concerning void
coalescence and final instability. Efforts are currently being devoted to
such an approach.
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GAUSSIAN IDEAL IMPULSIVE LOADING OF RIGID VISCOPLASTIC PLATES

Robert J. Hayduk
NASA Langley Research Center

ABSTRACT

The response of a thin, rigid viscoplastic plate subjected to a spatially
axisymmetric Gaussian ideal impulse loading was studied analytically. The
Gaussian ideal impulse distribution instantaneously imparts a Gaussian initial
velocity distribution to the plate, except at the fixed boundary. The plate
deforms with monotonically increasing deflections until the initial dynamic
energy is completely dissipated in plastic work. The simply supported plate of
uniform thickness obeys the von Mises yield criterion and a generalized consti-
tutive equation for rigid, viscoplastic materials. For the small deflection
bending response of the plate, neglecting the transverse shear stress in the
yield condition and rotary inertia in the equations of dynamic equilibrium, the
governing system of equations is essentially nonlinear. A proportional loading
technique, known to give excellent approximations of the exact solution for the
uniform load case, was used to linearize the problem and obtain analytical
solutions in the form of eigenvalue expansions. The linearized governing equa-
tion required the knowledge of the collapse load of the corresponding static
problem.

The effects of load concentration and an order of magnitude change in the
viscosity of the plate material were examined while holding the total impulse
constant. In general, as the load became more concentrated, the peak central
velocity increased and the time for plate motion to cease increased. For the
less viscous plate, these increases of velocity and time were more pronounced.
The final plate profile became more conical as the load concentration increased,
but did not approach the purely conical shape predicted for the point impulse by
the rigid, perfectly plastic analysis with the Tresca yield criteria. Profiles
of the less viscous plate were influenced more by the load concentration.

SYMBOLS

AI series coefficient, equation (A6)
n

a Gaussian distribution parameter

B = V-3 plate geometry and material constant
2h

C1, C 2  constants defined by equation (A5)

V3 Po' R
F' - M nondimensional collapse load amplitude

0
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F yield function

h plate half-thickness

I impulse per unit area amplitude at the plate center

II R' impulse parameter, sec
M

0

i (X), I (X) Bessel function of the first kind of real and imaginary
arguments, respectively

2' second invariant of the deviatoric stress tensor

kr' radial and circumferential curvature rates

k yield stress in simple shear

Mr, M radial and circumferential bending-moment resultants
Mr' M radial and circumferential bending-moment resultants at

initial yield
h2

M = a h yield moment of the plateo o

M
rM-- nondimensional radial bending-moment resultant

0

n =• Mnondimensional circumferential bending-moment resultant
o
0

' Ipressure amplitude at the plate center at collapse
0

p' R

Po nondimensional pressure amplitude at the plate center at
o collapse

Q shear stress resultant

q RQ nondimensional shear stress resultant
q=M

0

R plate radius

r radial coordinate

S.. deviator stress tensor
Ij
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S.. deviator stress tensor at initial yieldIj

t time

tf time for motion to cease

u(p,t) dynamic component of velocity

U(p) steady component of velocity

V initial velocity

v nondimensional plate velocity

w transverse deflection of the plate

z transverse coordinate

TA BR 4

M = plate geometry and material constant, secM
0

2= a2R2 nondimensional Gaussian shape parameter

y, Y0 material constants

Y2 4
V2, V4 harmonic and biharmonic operators in cylindrical coordinates

final center deflection

E.. strain rate tensorIj

n eigenvalues determined from equation (A7)

mass density per unit area of the plate

p nondimensional radial coordinate

G.. stress tensorii

a yield stress in simple tension0

D(F) function defined by equation (3)

circumferential coordinate

p(X ,B) function defined by equation (A13)

1(xn5P,$) function defined by equation (A12)
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INTRODUCTION

This paper presents the results of an analysis of the small-deflection
bending response of a simply supported circular plate of rigid, viscoplastic
material subjected to a spatially axisymmetric Gaussian ideal impulse. The
effects of load concentration and an order of magnitude change in the viscosity
of the plate material are examined while holding the total impulse constant.
Approximate expressions are developed for the time at which plate motion

ceases, the final shape of the plate, and the final central displacement.

Although there have been a number of papers (refs. 1, 2, 3) which permit
a time variation of the load, there have been few papers which consider a

radial variation other than linear (refs. 3, 4). The only general spatial
distribution of load which has received significant analytical attention is the

Gaussian distribution. By varying a single parameter, this general distribu-
tion can span the extremes from the point load to the uniformly distributed
load. This versatility was recognized by Sneddon (ref. 5) who approximated
the dynamic loading of a projectile on a thin, infinite elastic plate by a
Gaussian distribution of pressure. Madden (ref. 6), in his study of shielding
of space vehicle structures against meteoroid penetration, related the
meteoroid-shield debris loading of the main vehicle wall to a Gaussian initial
velocity distribution. The first study of this loading on a plastic plate was
by Thomson (ref. 7). He obtained the solution of a rigid, perfectly plastic
plate of material obeying the Tresca yield condition subjected to an initial
impulse of Gaussian distribution. Weidman (ref. 2), in/considering the
response of simply supported circular plastic plates to distributed time-
varying loadings, presented an example case of a radial Gaussian distribution
of pressure with an exponential decay. The plate material was also rigid,
perfectly plastic obeying the Tresca yield conditions.

A generalized constitutive equation for rigid, viscoplastic materials is
presented in the next section. Material elasticity is neglected in order to
simplify the analysis, as is frequently done in theoretical investigations of
dynamic plastic response of structures. Rigid-plastic analyses are generally
believed to be valid when the dynamic energy is considerably larger than the
maximum energy which could be absorbed in a wholly elastic manner and the
duration of loading is short compared with the fundamental period of vibration.

LINEARIZATION OF THE GENERALIZED CONSTITUTIVE EQUATIONS

FOR RIGID, VISCOPLASTIC MATERIALS

Perzyna (ref. 8) developed a generalized constitutive equation for rate
sensitive plastic materials by incorporating a general function in the
relationship to take the place of the yield function as used by previous
researchers (Hohenemser and Prager, ref. 9; and Prager, ref. 10). Utilizing

the definition of the second invariant of the stress deviator, J= 1 SiS
the yield function is expressed as
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j~l/2

F= -i (1)k

where Si. is the stress deviator tensor and k is the yield stress. TheIj
generalized constitutive equation proposed by Perzyna is

= y 0 O(F) DF (2)
F) j

where £.. is the strain rate tensor,
1J

4)(F) = 0 if F < 0

(3)
O(F) # 0 if F > 0

0

and y denotes a physical constant of the material.

Perzyna (ref. 11) has shown that the generalized constitutive equation
for viscoplastic materials reduces to the constitutive equations of an incom-
pressible, perfectly plastic material first considered by von Mises and to the
flow law of perfect plasticity theory. As in the theory of perfectly plastic
solids, convexity of the subsequent dynamic loading surfaces and orthogonality
of the inelastic strain-rate vector to the yield surface follow from Drucker's
postulates defining a stable, inelastic material with inclusion of time-
dependent terms (Perzyna, ref. 8).

A method of linearizing boundary-value problems in the theory of visco-
plastic solids is described by Wierzbicki in reference 12. In this method, as
shown graphically in figure 1, the concept of proportional loading is used to
relate the state of stress Si- on the initial yield surface F = 0 to sub-
sequent states of stress, namejy, proportional loading requires the direction
cosine tensor of the state of stress in deviatoric space to be independent of
time:

S.. s..
I = 1J (4)

J2,i/2 k

This is a reasonable approximation for axisymmetrically loaded simply supported
circular plates because the plate center and boundary are automatically pro-
portionally loaded, that is, the bending moments must always be equal at the
plate center and the circumferential bending moment must always be zero at the
plate boundary.

Utilizing equation (4), the generalized constitutive equation (2)

becomes
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where the viscosity constant y = Y</2k. For this analysis, the linear form

O(F) = F (6)

is chosen. This simplified constitutive equation still is nonlinear in stresseF
However, in the solution of dynamical plate and rotationally symmetric shell
problems, the constitutive equation (5) with the linear function O(F) = F
produces full linearization of the governing equations.

For the problem of a uniformly loaded, simply supported circular plate
with O(F) = F, Wierzbicki (ref. 12) has shown that the approximate solution
obtained using the proportional loading hypothesis agrees very well with a
numerical finite-difference solution of the exact equations. The solution of
the linearized problem also agrees well with experimental data on impulsively
loaded plates by Florence (ref. 13).

For the linear function equation (5) becomes

•i"= Yk ('9z - •'z ) (7)
ij k i-a 'a

where equation (7) is really a flow relation for a given structure rather
than a constitutive equation describing a given material (ref. 14).

GOVERNING EQUATIONS, BOUNDARY AND INITIAL CONDITIONS

A Gaussian ideal impulse is suddenly applied to the entire surface of a
rigid, viscoplastic plate of radius R and thickness 2h resulting in an
initial velocity distribution described by

22
I -a r

V(r, 0) e -- e (8)

where I is the impulse per unit area at the center of the plate and P is
the mass density per unit area of the plate middle surface. The boundary of
the plate at r = R is simply supported. The geometry of the plate and
initial velocity are shown in figure 2.

The parameter a in the distribution function is a shape parameter which
controls the distribution of the impulse. For a = 0 equation (8) describes
a uniform impulse; and as a ÷ •, I ÷ • equation (8) describes a point
impulse at the plate center.
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The internal forces and moments acting on a typical plate element are
shown in figure 3. If rotary inertia is neglected, but transverse inertia
taken into account, the equations of motion are

D D 2w

y@ (rQ) = ar
@t

(9)

(rM) - M1 = rQ

Utilizing the Love-Kirchoff hypotheses, the curvature-rate-moment rela-
tions, derived from the linearized constitutive equation, equation (7), are

* B

k =I- [(2M - M ) - (2R - R
r M r04 r r )0

(10)

K [(2M - M) - (2R - R)]4) M [0 2 r rM

where B = V-3 y/2h. Mr and M1 are moments satisfying for any r the
equation of the initial yield surface

M2 - MM + M2
r r r 0  (

Mo = Goh 2  is the yield moment of the plate material and Go is the yield
stress in simple tension.

For small deflections of the plate the curvature rates Kr and are
related to the deflection rate i by

r. K T (12)r 2' r

Equations (9), (10), and (12) form a linear parabolic system of partial
differential equations with six unknown functions - Mr, M,_Q W, Kr, and
Kp -- plus the unknown static moment distribution Mr and Mo.

By eliminating all unknowns except *, the system of governing equations
can be reduced to the single, fourth-order equation

2M4
3B +p-t = r -r [•r (rMr) -Mo] (13)

where V 27 + ; L--,] [L2 -
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The right-hand side of equation (13) represents the internal force distribu-
tion at the initiation of collapse in the static case.

Let p• denote the static load-carrying capacity of the plate, then the

right-hand side of equation (13) can be replaced by -p -a2r2 and the
governing equation becomes

2M 2 2o V4 . + 3w e -a r (14)
3B te

This method of solution, proposed by Wierzbicki (ref. 12), has-the impor-
tant property of replacing the unknown static moment distribution Mr and Mc,
whose explicit formulas are not known for the von Mises yield condition, by
the static load-carrying capacity p' Thus, the need for explicit formulas
has been reduced to finding the value of a constant, pT, corresponding to a
particular value of the shape parameter, a. The determination of the load-
carrying capacity, po,, of a circular plate under a Gaussian distribution of
pressure is presented in reference 15.

Define the dimensionless quantities

M M
M , n ' q=M

0 0 o

r a2R2
R = ,R (15)

1 Dw'3 /p.'R

BR 2 t F 4 M0

2 2 1 3
and let V 3O 2 + Then the final form of the governing equation,

equation (14), is

4 3 3v _ _

v +v 2 at - 2 V3 F' e (16)24 3t•=,(6

where a = pBR 4/Mo.

The boundary conditions of the simply supported plate are
m = n, q = 0 at p = 0

(17)

v=m=0 at p=l
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Using equations (10), (12), and (9), equations (17), in terms of

rate of deflection become

ur 2( (33v 02 1 {v 2 = " 0;
p -÷0 2p2 p -÷ 0 3 p P

(18)
2 32v + • = 0; v(lt) = 0

3p2 ý p = 1

For the Gaussian ideal impulsive loading the plate is initially flat and the
initial velocity has a Gaussian distribution

w(P, 0) = 0; v(p, 0) Ie (19)

where I ' -R
M

0

RESULTS AND DISCUSSION

The solution to the governing equation, equation (16), with associated
boundary and initial conditions, equations (18) and (19) are presented in
the Appendix. The effects of load distribution and plate viscosity on plate
response are examined in this section while holding the total impulse constant.

The impulse amplitude, I' = IR 2 /Mo, sec, at the plate center is related
to the total impulse, IT, and distribution parameter, f, by the relation

It = 1 (20)

TFM 
TIT_ -3

For comparison purposes the total impulse is held constant at I-T-- 1 x 10

0

sec. The impulse becomes more concentrated at the center of the plate as
is increased and the amplitude grows almost linearly as ý becomes large.
For ý = 0, the impulse has a uniform distribution.

The graphical results were obtained by programing the solution (equations
(A14) and (A15)) and summin8 the series term-by-term. The rapidly convergent
series with 1/X5 and l/X% factors did not present any computational diffi-
culties; however, the last series in the velocity expression equation (A14)
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has a 1/An factor and prohibited the calculation of velocity-time histories
for small 3 and t. For t = 0 the series is slowly convergent.

A representative plot of the plate central velocity is shown in figure 4
for ý = 10 and viscosity parameter a = 1 x 10-2 sec. The initial central
velocity is seen to rapidly decline during the first 0.025 msec after which
the velocity more slowly tends to zero.

The plate is seen to deform monotonically with increasing deflection until
the initial dynamic energy is completely dissipated in plastic work and the
plate comes to rest. The deformed profiles of the plate at rest are shown in
figure 5 for two values of a (1 x 10-2, 1 x 10-3) and various values of 3.
The profile becomes more conical as the impulse becomes more concentrated and
the profiles of the less viscous plate (a = 1 x 10-2 sec) exhibit a wider
variation, thus are influenced more by the shape parameter ý than are those
for the a = I x 10-3 sec case.

Approximations

An approximation to the deflection of the plate is obtained from equation
(A15) by retaining only the first terms of series and using the approximation

+ d2P
2 + 1 ep 2 + (1 + P2) Y (-l)n(•P2)n

1 n l (2n) n!
l6n~l

_160 1
3 X5•(1p•

1

The result is

1 A_ F' -2 1 _iP2 1 (1l)n(ýP2 n1
2 w(p,t) 4=2 e- + +f (2n) n!

BR L n1J

-e3(x 3a ,"3 V (21)
(21

An approximate expression for the time for motion to cease can be obtained by
setting the derivative of the approximate displacement expression to zero,

that is' w tf i

ttf 34 A+ i t

tf = + (22)2X 1 ( 2V3 F'a
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Equation (22) is plotted in rigure 6 for 0 < a < 100 and several values of
ot. Equation (22) is an implicit function of A since I' and F' vary with
A. The effect of A diminishes after an initial rapid rise of tf with
increasing A. The symboled points represent computed times using the complete
equation for the velocity, equation (A14). Equation (22) is a very good
approximation for the case a = 1 x 10-3 sec. However, except for small values
of A, the approximation is poor for the U = 1 x 10-2 sec case.

For a ÷ - equation (22) limits to

V'3 I'
tf 4F'

(23)
_ I
p0

and represents the rigid, perfectly plastic case (y ÷ o) with the von Mises
yield condition. Equation (23) has the same form as Wang's (ref. 16) result
for the uniform ideal impulse problem using the Tresca yield condition for a
rigid perfectly plastic material. However, equation (23) gives slightly
smaller values of tf since PO = 6.51 for the von Mises yield condition
rather than 6 in the case of the Tresca yield condition.

The curve labeled Tresca, r.p.p. was obtained from the results of refer-
ence 7 where a simply supported circular plate of rigid, perfectly plastic
material obeying the Tresca yield condition and associated flow rule was
analyzed for a general Gaussian ideal impulse loading. For small A the two
curves differ only slightly, but as A grows larger and the impulse becomes
more concentrated, the two analyses predict drastically different times for the
plate motion to cease. The Tresca yield condition predcits very large times
for plate motion to cease, whereas the von Mises yield condition predicts more
realistic times for concentrated loads.

The substitution of equation (22) for tf into equation (21) provides
an approximate expression for the final plate displacements:

v7Pt = -v'F1 +~ ý2 + 1 1- + 2E (-l)flQýP 1flf)BR2+ W2 e + 1 2Zn=1 (2n) n!

X 11

3_an 1 (24)

and for the final center displacement 6 (0,tf) = w(0,tf):
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P (0 2 /- F' 1 / - 1+ 3 41
a06o tf) 4ý 1 ) 4F' 2X 4 n + (25)

Equation (25) is plotted as a function of B for the two values of cc in
figure 7. The approximations are in excellent agreement with the points
computed from the exact equations for both a = 1 x 10-3 sec and 1 x 10-2 sec,
even though the tf-approximations for the larger a were poor for large B
as shown in figure 6. The nondimensional central displacements are shown
smaller for the a = 1 x 10-2 sec case when, in reality the real displacements
are larger than for the a = 1 x 10-3 sec case. This is caused by a being
in the denominator of the expression for the nondimensional central displacement.

Profiles obtained from the approximation, equation (24), were compared
with profiles obtained from the exact equation. For a = 1 x 10-3 sec, the
differences between the approximate and exact profiles were negligibly small
for the entire range of ý considered, 10-3 to 10,000. However, for the less
viscous plates, a = 1 x 10-2 sec, the differences were not negligible and the
approximation, equation (23), should therefore be restricted accordingly.

CONCLUDING REMARKS

A thin, simply supported rigid, viscoplastic plate subjected to a Gaussian
ideal impulse has been analyzed within the realm of small deflection bending
theory. The plate material obeys the von Mises yield criteria and constitutive
equations due to Perzyna (ref. 11). These considerations lead, essentially, to
nonlinear equations governing the dynamic response of the thin plate. A pro-
portional loading hypothesis, proposed by Wierzbicki (ref. 12) and shown to be
an excellent approximation of the exact solution for the uniform load case,
was used to linearize the problem and obtain analytical solutions in the form
of eigenvalue expansions. The linearized governing equation on the velocity
of the plate required the knowledge of the collapse load of the corresponding
static problem, that is, the collapse load for the specific load distribution
parameter, 3.

The effects of impulse concentration and an order of magnitude change in
the viscosity of the plate material were examined while holding the total
impulse constant. In general, as the impulse became more concentrated, the
peak central velocity increased and the time for plate motion to cease
increased. For the less viscous plate material, these increases of velocity
and time, tf, for plate motion to cease are more pronounced. The final plate
profile became more conical as the load concentration increased, but did not
approach the purely conical shape predicted by the rigid, perfectly plastic
analysis with the Tresca yield condition for a point impulse. As the viscos-
ity of the plate decreases, the shape parameter has more effect on the final
deformed plate profiles.
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Approximate expressions were developed for the time at which plate motion
ceases, tf, the final shape of the plate, and the final central displacement.
Comparisons with the series solution indicated that the approximations were
excellent for the U. 1 x 10-3 sec case. The approximation for the final
central deflection was good for the entire range of shape parameter ý, the
other approximations were limited in usefulness.
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APPENDIX

SOLUTION OF EQUATION (16) BY EIGENVALUE EXPANSION*

Since the right-hand side of equation (16) is not a function of time, it
can be solved by means of an eigenvalue expansion method. Substitution of

v(p,t) = u(p,t) + U(p) (Al)

into equation (16) results in

V 4 u(pt) + 3 u (,t) + V4 U(p) - - 2V F' e- p2

2

which separates into

V4 u + 2-u = 0 (A2)

and

V4U =-2V/ F' e-•p (A3)

Equation (A3) is the same as equation (16) except for the absence of the
inertia term. Thus, U(p) is an equilibrium solution of equation (16) with the
same boundary conditions, equations (17).

The solution to equation (A3) satisfying the boundary conditions, equa-
tions (18), is

U(p) = F' C1 + C p2 + e e + )+ m2 (2m) m (A4)

where - =1 7 2 - 1 00 ( _lm_ m
6, = 3& -- e - - Xm(l) ý (A5)

1 3 3 - m=l (2m) m!

For more details, the reader can consult "Gaussian Impulsive Loading of
Rigid Viscoplastic Plates," by R. J. Hayduk, Ph. D. Thesis, Virginia Polytech-
nic Institute and State University, Blacksburg, Virginia, 1972.
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and
C2 1 7 1 -3 oo (_l)m~m

2 603 6 6 (2m) m!m=l

A general solution due to Wierzbicki (ref. 12) satisfying equation (A2)

and all prescribed boundary conditions can be written in the form

I -(2X 4/3))t

u(p,t) Y A [I (X )J (o p) - Jo(X )I ( P)] e n (A6)

n1 n [Io n0 n 0 n o n

where Jo(x) and 1o(x) denote the Bessel functions of the first kind of real

and imaginary arguments. The solution (A6) identically satisfies boundary con-

ditions (18 a, b, and d). The eigenvalues, Xn, are roots of the following

transcendental equation stemming from the boundary condition (18c) of zero

bending moment at the plate edge

I (X n)J1(Xn) + l1(Xn)J( 0 ) - 4Xno (X n)Jo (X = 0 (A7)

The only remaining unknowns in the solution are the series coefficients

AI. These coefficients are evaluated from the initial condition (19), that

is,
-p2

v(p,0) = u(p,0) + U(p) e

Thus,
it -p(82

u(p,O) - U(p) + e (A8)

and after substituting equation (A6) for u(p,0) there results

A [I (X )J (X P) - J (X )I (X 0p)] U(p) +- e (A9)

n-1 n o n o n o n o n01

The coefficients AI can be determined from (A9) by virtue of the orthogonal-

ity of the system [lio(n)Jo(XnP) - Jo(Xn)Io(XnP)l on the interval [0,I] where

is used as a weighting function. Therefore, coefficients AI can be

determined as

1 I' - dp

I IT'0
S (U(P) - e ) [Io(Xn)Jo(Xnp) - Jo(Xn)Io(np)] dp

A1 = no ()] 2 n (AI0)

f0 P[lo(ýn)Jo(Xnp) - Jo(Xn)lo(Xn)]d

where U(p) is defined by equation (A4). The resulting coefficients are
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AI [i (n )J (X p) -_ (X )I (x p)] = [4  F' _j_+ 2 I 1  W P') (All)n o n o n 0 n o n - 5n ' n
nn

where the functions 4(Xn,pb) are defined by the relation

16 (n = " (n,3)[o (Xn)Jo(X p) - J (X )I (Xnp)] (A12)35 nn of3
3A nýý[ 0 (Xn 0i n 0 n o np)

n

with

(n )j )- x•- iJ°(nll(n) + C2 1°(An) iJl(Xn) - 3 Jl(Xn) + J°(Xnn n

- 2 Jo(n) L xl(xn) I c (Xn) + I o I(XnA + (X2) J=1 (A x)dx

1 ~ x2 IA (X x) L ()(JA e IAxd ______ j(xd

nJ0(X) f 0 m= n

i(X )j ( X e-) 2 I o(A n) x + I () f1 - 31 (A )J (X )A13J

o2 n 0 n n[,Xn0l(n x I X , ( x 2)l , nX n

When equations (A4) and (A6) are summed and equation (All) is used, the
complete solution becomes

F' - + 2 ) + + n2)1 -E )22m

np 1 2 2_ 1r ( n (2n) n I

+ F O Z pX ,)(2Xf /3a)t 00 4nE n 5 n5 nn 3 E _ A Pp)e(2Xn/3x)t (A14)

Io(• n )J(l){ [IX )Jn)3 a I l n)Jo Xn) - I( nJo n)

The displacement of the plate is determined by integrating (A14) with
respect to time. Taking the initial condition of zero displacement into
account, the displacement becomes
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w(p't)= 4 F -t + ++ (L+ e2 2 n ýv-R2 2 Ft L ( (2n) n!

n=l

+_,2 n=F 3 00 e(2 4/3a)t)

n

+ nP•W1 - e- (2X /3-lt (A15)
n=l e5An3cnt

Equations (A14) and (A15) represent the complete solution for the velocity
and displacement of the plate. In the limit as 3 ÷ 0, the Gaussian ideal
impulse becomes the uniform ideal impulse and this solution reduces to the
solution presented by Wierzbicki (ref. 12).
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RECENT ADVANCES IN SHELL THEORY

James G. Simmonds

Department of Applied Mathematics & Computer Science

University of Virginia

INTRODUCTION

The results to be reviewed are divided into two categories: those that re-
late two-dimensional shell theory to three-dimensional elasticity theory and
those concerned with shell theory per se. In the second category I further dis-
tinquish between results for general elastic systems that carry over, by spe-
cialization or analogy, to shells and results that are unique to shell theory
itself. Because of the limitations of space and my interests, I do not men-
tion multilayered or sandwich shells. A good discussion of these with an
ample list of references may be found in Librescu's book [1]. Also, in view of
the excellent review articles by Stein [2] and Hutchinson and Koiter [3], I
have not attempted to review the enormous literature on shell buckling.

TWO APPROACHES TO SHELL THEORY

Most texts derive shell theory by a mixture of two-and three-dimensional
considerations. However, a number of recent papers have adopted one of the
following two extreme approaches:

A. A shell is idealized as a material surface in three-dimensional Eu-
clidean space capable of transmitting forces and moments. The physical laws
for this two-dimensional continuum are postulated in analogy with those for a
three-dimensional one. Stress-strain laws and even failure criteria are for-
mulated in terms of two-dimensional variables and may be deduced directly from
experiments on the shell material. The papers by Sanders [4], Ericksen and
Truesdell [5], Serbin [6], Budiansky [7], Simmonds and Danielson [8], and
Reissner [9], to mention but a few, as well as much of the monumental treatise
by Naghdi [10] are written in this spirit.

B. No matter how thin, a shell must be regarded as a three-dimensional con-
tinuum. However, the governing equations can be enormously simplified by con-
sidering various formal asymptotic expansions of the unknowns in terms of ap-
propiate "thinness" parameters. In the interior of the shell (i.e. away from
edges, concentrated loads or geometric discontinuities of one sort or another)
the leading terms of the expansions satisfy various sets of two-dimensional
equations that we call, collectively, the shell equations. Among those who
have contributed recently to this second approach are Green [11], Johnson and
Reissner [12], Cicala [13], Van der Heijden [14], and especially Goldenveiser
(see the references cited in [15].)
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The virtue of the first approach is also its shortcoming: there is no way
to estimate intrinsically the errors made by neglecting three-dimensional ef-
fects. Or, from another viewpoint, there is no systematic way to construct a

refined shell theory.

A drawback of the second approach, aside from its tediousness, is that it
requires a knowledge at the edges of the shell of the distribution in the
thickness direction of the applied stresses or displacements. As Koiter has
emphasized [16], we never know these distributions precisely, except at a free

edge. Another drawback of the second approach is that, because the thickness
of the shell is always incorporated in the expansion parameters, one set of
uniformly valid interior (i.e. shell) equations does not emerge. Rather there
is one set of equations for a "membrane" state, another for an "inextensional
bending" state, another for a "simple edge effect", another for a "degenerate

edge effect", and,if one is dealing, for example, with an infinite cylindrical
shell subject to self-equilibrating edge loads, still another set of equations
is needed to recover the "semi-membrane" theory of Vlasov [17, p. 2541.

THE ASYMPTOTIC APPROACH

The goal here is to provide a systematic method of refining the analysis

of thin-walled bodies. One important consequence of the asymptotic approach
is the verification and refinement of the classical Kirchhoff boundary condi-
tions. Another useful result is that it gives a method for computing the do-
minant stresses in the immediate vicinity of an edge without the need of
solving a full three-dimensional problem. We shall first illustrate the es-
sence of. the asymptotic method by means of a simple example drawn from the
work of Goldenveiser and Van der Heijden. Then we shall indicate the implica-
tion of the results for nonlinear shell theory.

Let (r,8,z) denote a set of cylindrical coordinates and consider a homo-
geneous, elastically isotropic plate that occupies the region 0<r<R, -H<z<H.
Let the plate be free of body forces and edge tractions but subject to self-
equilibrating normal tractions on its upper and lower faces. The linear
equations of elasticity may be expressed as three equilibrium equations for
the six independent components (0 , T, G ,T ,T ,a) of the symmetric stress
tensor plus six stress-strain relations witE tke strains expressed in terms of
the components (u,v,w) of the displacement vector. Let p=r/R and ý=z/H. Then
the boundary conditions read

a(p,e, + 1)=+ ,H2 aop(p,6), T r(p,5,+1)=•T(p,e,+ l)=O (3.1)

al (ld=0, (3.2)

where a is a reference stress chosen so that Ipj• 1. The boundary conditions
induce a state of pure bending in which (ar,T,G,0,uv) are odd in ý and
(Tr,T ,w) are even.

Goldenveiser's approach, following earlier work by Friedrichs and Dressler

[18] and Green [11], is to express each unknown as the sum of a "basic" or in-
terior contribution plus two distinct "auxiliary" or edge zone contributions.
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The edge zone contributions are expressed in terms of the scaled variable
C=(R-r)/H--I1(1-p) so that, for example,

ar(P,6,r•;•)=ao[r (P,6,•;c)+dr•0,;) r•0,;)

and u(p,6,•;E)+(R/E)[+ u(,r ;s)].

For a traction free edge, Goldenveiser [19] assumes the following formal as-
ymptotic expansions

(Z rT,5T r TTZ5uv,,W)

2O n n n n n n ~n n n 2 ~)

Z "'" (ZT , , , , T,£ ,C Z c S u,Ev,s w)(3.3)r 0 r r e
A ^ n n n n ^n _ n _ n 2- (n...,)~-'C (@EUn@ ,6, ,u Ev. ,_ W). (3.4)

The edge zone contributions are assumed to vanish exponentially as ?.

When these representations are substituted into the elasticity equatioms
and their assumed asymptotic character accounted for, there results an infi-
nite sequence of differential equations for each infinite sequence of coeffi-

cients {Z r,...,n},{ ,...,w . Furthermore, the boundary con-

ditions (3.1) and (3.2) imply that for C=+l,

Z = . _,(n+l, n, T n)=O (3.6)

~eI ~i n+m+^n,~n+^n ~n+^n)= 37

666 6, r r

and that for p=l and =O:

0 o0°°, 1 -.1 n+l+n+ n n+2+ n+2+• A n+Tn+ýn)=0
(Z , T +T JT +T , Z eia-- T +T ,T+n~)Q(3.8)

r r r r, r r r

where n=0,1,2,,....

The equations for the interior coefficients may be integrated systemati-
cally with respect to C. Application of the face boundary conditions (3.6)
leads, in the first instance, to the classical equation of plate bending

(2/3)AAW°=(l-v 2 )p AW-=W, W,. (3.)

All of the remaining lowest order interior coefficients are expressible in
terms of W°; in particular

21-1 o -2 0 E/¢•p8

zo=-(-v 2 ) 1C[WO•+V(pWlo+ W5 2/ 3 MO(6) (3.10)
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0-21 2 -o 1OT°=(I+v)-Ip WPe-p_ W5p8 ]=2/3ýH (p,O) (3.11)

r2 pr

The first of the edge boundary conditions in (3.8), namely Z =0, yields only
one of the two boundary conditions needed for W . To obtain the second, the
edge zone solutions must be considered.

The infinite sequence of differential equations for the set of edge zone
coefficients ( ,...,Z) can be grouped into sets which resemble the nonho-
mogeneous St.-Venant equations for the torsion of a prism whose cross-section
is the semi-infinite strip ý>,1{Il. Likewise the differential equations for
the coefficients ( r,...,.) can be grouped into sets which resemble the non-
homogeneous equations of plane strain for the same semi-infinite strip. The
solutions of the torsion and plane strain problems are coupled through the non-
homogeneous terms in the differential equations as well as through the boundary
conditions (3.7) and (3.8) which also link these solutions with the interior
solutions. It should be noted that in the edge zone differential equations, a

appears only as a parameter.

In order that the edge zone solutions decay as ý-*o, it is necessary that
the forces and moments applied to the boundary of the semi-infinite strip be
equilibrated by the non-homogeneous terms in the torsion and plane strain
equilibrium equations. These integral conditions yield, ultimately, the addi-
tional boundary conditions needed for the various interior solutions. For ex-
ample, the Kirchhoff boundary condition that relates the shear stress resul-0

tant Q and the derivative along the edge of the twisting stress couple H° is
r

obtained as follows.

The solution of the lowest order torsion problem may be expressed in terms

00

of a stress function ip°, where

Aý° 0=, C, (E,+l)=0, ý, (0o,)=-ý (3.13)

and

T 2/3sH°(l,e)ik, To= -2/3T8 °(l e)•' (3.14)

The lowest order equation for equilibrium in the ý-direction for the plane
strain problem ip

o+ (0+o)R (3.15)

From the last of the boundary conditions (3.7) and (3.8), the condition that
the net forces in the c-direction add to zero, to lowest order, is

-• T(,,) + r o •(ý,O')dý]dý=O" 3.61 (3.16)
-l r(10 0 C

With the aid of (3.12) and (3.13) to (3.15), (3.16) reduces to

Q + Ho 0 at p=l, (3.17)
r '0
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which is the second boundary condition for W0 . It is important to note that
one never needs to actually solve for iO to obtain this result.

GOLDENVEISER'S EXTENSION AND KOITER'S SIMPLIFICATION OF THE PRECEDING RESULTS

The solution for ( ... , W) reduces to the solution of a biharmonicr
equation for WI. To obtain boundary conditions for W1 one again considers the
integral conditions of overall equilibrium necessary to guarantee decaying
edge zone solutions. To evaluate these, one must solve explicitly for

(which is easily done) but needs only to consider the form of the solution of
the lowest order plane strain problenr. After a straightforward but tedious
analysis, there results the refined boundary conditions of Goldenveiser [191:

Mr= AH,0, Ql + H,1 + AN4Z=O' (4.1)r r

0where A=l.260...is computed from the solution for 4O. The details of the cal-
culations leading to (4.1) may be found in a report by Van der Heijden [201.

Goldenveiser's results may be restated in the following useful way. Con-
sider a plate of radius R and thickness 2H subject to a self-equilibrated nor-
mal pressure p but otherwise free of surface and edge tractions. Solve the
classical equation of plate bending subject to the refined boundary conditions.

Mr - A(H/R)H, = 0, Q + He + A(H/R)H, 6 =0 at p=l. (4.2)

Then the stresses in the interior of the plate, to within a relative error of
0(H2/R2), are given by the formulas for Zo, T°, etc. but with W replaced by
W. Moreover, in the edge zone of the plafe, the dominant stresses, to within a
relative error of 0(H/R)6 are given by these same formulas except that T0 is
replaced by To+T°, and T6 is replaced by T, where T and are given by (3.14)

These results are simple and satisfying. Though derived for, perhaps, the
simplest, non-trivial problem imaginable, their qualitative implications for
shells with free edges undergoing large deformations is clear, namely 1), the
most importnat refinement of the classical shell equations are in the boundary
conditions and 2), the dominant stresses near a free edge can be inferred from
the solution of the shell equations and the solution of a torsion problem for
a semi-infinite strip. To give these statements a quantitative form via an
asymptotic analysis would seem to be a formidable task.

The problem of refining the Kirchhoff boundary conditions at a free edge
has, fortunately been solved by Koiter [151 in an alternate way, using an in-
genious energy argument. As Danielson [21], and Koiter [22] have shown, the
three-dimensional tangential shear stress predicted by shell theory-at a free
edge does not vanish, even though the Kirchhoff boundary conditions are satis-
fied exactly. Thus the conventional strain energy expression of shell theory
overestimates the torsional energy in the neighborhood of a free edge. To as-
sess this error, Koiter considers the torsional rigidity of a flat strip whose
thickness is equal to that of the shell. By comparing this expression with
that given by classical plate theory he is able to identify an edge zone cor-
rection factor which is proportional to the twist per unit length of the edge
of the strip. The torsional energy associated with this term is therefore
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expressible as a line integral. For an arbitrary shell with a smooth edge
curve Koiter argues that one merely needs to insert an appropiate expression
for the edge twisting per unit length for the shell into this line integral and
then subtract this expression from the conventional surface integral for the
shell energy.

Koiter's result may be of limited practical value. If the shell has other
edges that are not free of stress, it is most likely that the associated shell
boundary conditions cannot be refined because the corresponding boundary con-
ditions of elasticity theory cannot be determined precisely. The shell equa-
tions are elliptic, hence the influence of boundary conditions extend every-
where, and it would be inconsistent to use refined boundary conditions at a
free edge but unrefined ones at another edge.

The results of this section also imply that so-called thick shell theories
are meaningless if applied to homogeneous shells with edges. We should note,
however, that Van der Heijden has shown that Reissner's latest thick plate
theory [23] does give fairly good numerical results for stress concentration
factors for circular holes in infinite plates.

THE DIRECT APPROACH TO SHELL THEORY

Here and in the following section we mention briefly - space limitations
permit no more - some recent work concerning different formulations, implica-
tions, simplifications and the reduction of certain problems of the now gen-
erally accepted equations of first-approximation shell theory.

Formulations of the Nonlinear Theory

A strictly mechanical theory of shells may be expressed entirely in terms
of the midsurface displacement components [5]. If dynamic effects are Ecluded,
alternate formulations are possible in terms of the components of a stress
function and rotation vector [81, or in terms of stress resultants and bending
strains [15]. In the last case, any displacement boundary conditions need to
be reformulated in terms of strains [24,25]. This in itself has advantages,
for it automatically leads to the boundary conditions for inextensional defor-
mation and, in the linear theory, it gives boundary conditions that are the
geometric analogues of the Kirchhoff conditions.

Thermodynamic Considerations

These are important for at least three reasons. 1) heating a shell may
cause it to fail, buckle, or vibrate; 2) the best justification of the static
approach to stability for a continuous body is a thermodynamic one; and 3) the
coupling of mechanical and thermal effects produces damping.

There is a plethora of papers on 1) that we shall not attempt to review;
a few texts give a discussion of the underlying ideas. The thermodynamic as-
pects of stability in general elastic systems are discussed in [26,27,28].
These results are directly transferable to shell theory. The specific form
and role of the laws of thermodynamics in shell theory are discussed in [10].
The effect of thermal damping on the free vibrations of shells is considered
in [29] where it is also shown that, because the damping is light, perturbation
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methods may be used to advantage.

Variational Principles

A problem of long standing in nonlinear elasticity has been to formulate
a principle of complementary energy. Recent work [30,31,32] has established
conditions under which this is possible. In particular, in [331 and [34],
these results have been applied to the nonlinear von Karman plate equations
and Marguerre shallow shell equations to obtain upper and lower bounds on an
associated energy functional.

SOME NEW RESULTS IN LINEAR SHELL THEORY

Shells As Beams

For general cylindrical shells and shells of revolution, one may consider
special classes of solutions that, in a St. Venant sense,.correspond to the
stretching, bending, twisting, and flexure of a beam. In many cases the re-
sulting equations can be solved explicitly. See [35,361.

Reduction of the Governing Equations

The shell equations constitute a system of eighth order. For analytical

purposes, especially for the application of perturbation methods, it is often
convenient to attempt to express these equations as two coupled fourth order
equations. (A single eighth order equation destroys the very useful static-
geometric duality). Such reductions have been found for spherical, general
cylindrical, and minimal shells as well as for shells of revolution. A reduc-
tion for arbitrary, non-developable shells is also possible, but does involve
some loss of accuracy. See [371 where other references are cited.

Membrane Theory

It is well known that shells with the proper shape and boundary support
can be analyzed with good accuracy by membrane theory. The details of such
an approach are spelled out in a very general but useful way in [381.

Cracks and Cutouts

Shells may contain cutouts by design and cracks by accident. In practice
the dimensions of these cracks and cutouts is apt to be small compared to some

characteristic geometric dimension of the shell, permitting shallow shell the -
ory to be applied. The calculation of the stresses has been reduced to the
solution of coupled singular integral equations [39] that have been solved
numerically for several important problems. See [40] and the references cited
there.

Pointwise Estimates For Approximate Solutions

The Prager-Synge hypercircle method is useful for constructing approxi-

mate solutions to linear shell problems, and provides mean square error es-
timates for the approximate stress field. More desirable are pointwise es-
timates for both the approximate stress field and the approximate displace-
ment field. For recent work on this problem see [41] and the references cited
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therein.

Wave Propagation, Asymptotics, and St-Venant's Principle

These are three additional areas in which there has been significant re-
cent progress but which cannot be reviewed for lack of space.
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FLUID-PLASTICITY OF THIN CYLINDRICAL SHELLS

Dusan Krajcinovic
University of Illinois at Chicago Circle

M. G. Srinivasan and Richard A. Valentin
Argonne National Laboratory

SUMMARY

The paper considers dynamic plastic response of a thin cylindrical shell,
immersed in a potential fluid initially at rest, subjected to internal
pressure pulse of arbitrary shape and duration. The shell is assumed to re-
spond as a rigid-perfectly plastic material while the fluid is taken as
inviscid and incompressible. The fluid back pressure is incorporated into
the equation of motion of the shell as an added mass term. Since arbitrary
pulses can be reduced to equivalent rectangular pulses, the equation of mo-
tion is solved only for a rectangular pulse. The influence of the fluid in
reducing the final plastic deformation is demonstrated by a numerical example.

FORMULATION OF THE PROBLEM

Consider a rigid-ideally plastic, thin-walled, circular, cylindrical shell
of infinite length. The shell is surrounded by a pool of potential (inviscid
and incompressible) fluid infinitely extended in all directions. The shell
is subjected to an internal pressure pulse P(z,t), varying both along the axis
and with time. P(z,t) is further assumed to be axisymmetric and symmetric in
z with respect to z = 0 (fig. 1).

This paper examines the influence of the fluid in reducing the plastic
(residual) deformation of the shell. It is known that the pressure with
which potential fluid resists the motion of a deforming solid can be con-
sidered as an increase in the inertia of the solid. Therefore in order to
solve the problem it is necessary to establish the so-called effective mass
consisting of the actual mass of the shell and the added (virtual) mass
reflecting the fluid resistance. Then the problem is reduced to the analysis
of a shell deforming in vacuum. For the sake of continuity, we will adopt
the notation introduced in reference 1.

GOVERNING EQUATIONS

The equation of motion of the shell is:

Research performed under the auspices of the U. S. Energy Research and
Development Administration
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•2M N _V

2 M - P - P - N pH D()
z2 f R

where M is the axial bending moment, N the circumferential (hoop) normal
force, R, H and p the radius, the wall thickness and the mass density of the
shell respectively, V the radial velocity of the points on the middle surface
of the shell, and P(z,t) and Pf(z,t) are the externally applied pressure pulse
and the back pressure of the fluid resisting the motion of the shell
respectively.

We assume that the yield condition in the M,N space is defined by the
limited interaction curve of fig. 2. The implications of this assumption are
discussed in detail by Drucker (ref. 2) and Hodge (ref. 3). The yield values
Sand Ny are given by

M = HRP N = RP (2)
y 4 o y o

where

P H (3)
o yR

with ay being the yield stress.

It is known (see, for example, ref. 1) that four different phases (modes)
of plastic deformation may occur during the motion. We will consider herein
only one of these phases which occurs for all possible types of loading,
though this restricts the magnitude of the loading to a certain limit. In
the considered phase the deformation is characterized by a stationary plastic
hinge circle at z = 0 and two moving hinge circles at z = ± ý(t).

It can be shown (see, for example, Eason and Shield (ref. 4)) that the
plastic regimes (see fig. 2) are as follows:

z = 0: M = -M , N = N Regime A
Y y

z =: M = M , N = N Regime B (4)Y Y

0 < z <: -M < M < M , N = N RegimeAB

Thus, from the normality of the strain-rate vector to the yield surface,

-- = 0 V > 0 for 0 < z < (5)
az2

For this deformation mode the velocity, V(z,t), is therefore a linear function
of z, i.e.,

V(zt) t) (1 ) 0 < z (6)
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In the above equations and in the sequel because of symmetry it is enough to
consider only half of the shell z Ž 0.

DETERMINATION OF THE ADDED MASS

Before attempting to solve equation (I), the backpressure Pf(z,t) should
be determined as a function of V(z,t) and its derivatives. The equation
governing the flow of the potential fluid is in polar coordinates

•2F iF 2F
F+_I + = 0 in r > R (7)

ar2 r Dr az2

where F(r,z,t) is the fluid velocity potential.

As the shell is impermeable, the velocities of the fluid and the shell
at the points of contact must be identical, i.e.,

r =V at r = R (8)

Furthermore, from the radiation principle,

V - 0 ,F r 0 9F ÷ O as max(r.,z) ÷ (9)

Once the fluid velocity potential-is determined from the Laplace equa-
tion (7), subject to the boundary conditions (eqs. (8) and (9)) the pressure
exerted by the fluid on the shell can be computed from the Cauchy integral,

Pf(z,t) = -Pf - at r = R (10)

where Pf is the mass density of the fluid.

The equations (7) and (10) imply the assumption that the perturbations
about average values can be neglected.

As a further approximation, we will assume that the functional relation
between Pf(z,t) and ý is not sensitive to the time dependence of ?, and hence
ý may be treated as a constant for the determination of this relation. Then
in view of equations (6), (7) and (8), we may write

F(r,z,t) = V (t) f(r,z) (11)
0

and from equation (10),

dV0

Pf(z,t) =P-ff(R,z) dt (12)

where -pff(R,z) is the added (virtual) mass arising due to the resistance of
the fluid being displaced by the shell.

Substituting equations (11) and (6), (with C being constant) into equa-
tions (7) to (9), it follows
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3 f 1 Df 2f
2- + -- r+ 2 = 0 (13)r2 r 3r Dz2

subject to

(i•-•) at r = R, z (13f Z)(14)

Dr 0 at r = R, z >

and

3f 3f
f 0 0 , -z 0 as max(r,z) ÷ (15)

The details of the solution of equation (13) are omitted herein for the
sake of brevity. A closed form integral solution is obtained after intro-
ducing the Fourier cosine transform. The argument of this integral is
rather complicated and the integration is performed in three stages using
asymptotic formulae and Filon's method, subject to the restriction, C < R
which is subsequently seen to be not severe. In order to make this numerical
solution amenable for substitution into equation (1), the result is subjected
to a series of polynomial regression analyses. Finally we obtain

f(R,z) -R (g 0 (•) + gl (.ý) _j) (16)

where

B~2 3
g 0 (x) =50 + 1 x + + 5 3x (17)

2 3

and g 1 (x) =a 0 + aix + t2x + a 3x (18)

with a0 = .004994512 0 = .02050149

, = -. 5420473 ýl = 1.664447

a 2 = -. 1058701 2 = -1.105309

a3 = .1627719 53 = .4096600

Note ai and ýi are dimensionless constants that do not depend on the shell/
fluid parameters.

PLASTIC DEFORMATION OF THE SHELL

Equation (1) now becomes, in view of equations (2), (6), (12) and (16),
•2M = P(z' t) - P H H+pf Rg0 - (H -pfRgl dt°0

2 R f

in 0 < z < (20)
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In equation (20), C = C(t). For arbitrary P(z,t) the above equation may only
be solved by numerical methods. As a first step in simplifying the work, the
approach introduced by Youngdahl (ref. 1) will be used to approximate a com-
plex loading function by (i.e., correlate it to) a simple rectangular pulse.
Since the standard limit analysis of the shell is independent of any sur-
rounding medium, the method given by Youngdahl (ref. 1) to determine the
equivalent rectangular pulse does not need any modification in this case.
Thus correlated, P(z,t) can be expressed as

P(z,t) = P e z _< L and 0 _< t < te e e (21)

P(z,t) = 0 Iz > Le or t>te

where Pe is the magnitude, te the duration and 2 Le the length of the loaded
area of the equivalent rectangular pulse (see ref. 1 for their derivation).

For plastic deformation to occur, Pe must be greater than the limit load.
This condition is expressed by (see ref. 1)

Pe > ( 1 + V + -4 (22)
Le

For the deformation to take place in the assumed phase, the following
boundary conditions must be satisfied

M-M , _M= 0 at z = 0
y 5z

MM (23)M=My ' z0 at z=~
y 9

Further, the condition that the bending moment does not exceed M at the
hinge circle at z = c implies

S< 0 at z= (24)

9z

In addition the condition that the bending moment cannot be less than -My at
the hinge circle at z = 0 implies

-- > 0 at z = 0 (25)

z z
2

For the interval 0 < t < te, a trial solution as in the case of a shell
deforming in vacuum is assumed. This is taken in the form

ý(t = zI • 0_

0• t < t (26)
and Vo(t) = 1  e

0 pHt)

where zI and K1 are constants. Substituting equation (26) into equation (20)
and integrating twice subject to the boundary conditions (23) yields in the
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end two equations for z1 and KI. These two can be reduced to:

a(zl)Pz 2+{6-4a(zl)}PeLeZ -{6-3a(z 1)}(PL ±+P RH) = 0 (27)

and

6pH(P L z -P L2- P RH)
K, e ee e~e 0 (28)

zI H -pf Rg gl
1 z(P fR~ R)j

where

PH - PRg 1
c(z ) = (29)

pH+PfRg0 I)

The inequalities (24) and (25) can be written in the form

PzP f R -g (-+ gl (-I) z> 0 (30)0P1 1 P H 0 R)1 FR))l

and 4PLz -Pz -3P L2 3PoRH < 0 (31)eel el e e 0

From equations (17), (18) and (19) it is easily verified that inequality
(30) is always satisfied. If inequality (31) is not satisfied motion cannot
start in the phase assumed. When the inequality becomes an equality, Pe takes
the bounding value. To determine the bounding value of Pe, the non-linear
equations (27) and (31) should be solved simultaneously. This is done
numerically. Figure 3 shows the range of values of Pe that satisfies in-
equalities (22) and (31) and hence gives rise to deformation in the assumed
mode. For a Pe belonging to this range, the non-linear equation (27) may be
solved numerically. Also it may be verified that the restriction zI < R is
always satisfied if Le < R. Thus, the solution discussed in this paper is
valid for Le < R and Pe satisfying inequalities (22) and (31).

For t > te, there is no internal pressure. Letting P(z,t) = 0 in equa-
tion (20), integrating it twice with respect to z and substituting the result
into the boundary conditions (23), we arrive at the following equations

dVo -Po (C2 + 3RH)

dt ~ 2 HpH+pf Rg 0  ( C)(

d 3{ (vj = P( ) (33)
H- f Rg

Equations (32) and (33) constitute a system of non-linear, first order differ-
ential equations for V0 and C, the initial conditions being given by
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C(t) =Z (34)

Vo(t = ie (35)
o e~ pH

The above differential equations are valid only for t e t tf where tf is

defined by

V (tf = 0 (36)

We will denote

Cf -C(t f) (37)

From equations (32) and (33), we can express V as,
0

V (t) P 0 7 6RH 3RH+C 2  (38)
o C d-t) PH -H-PfRgI (9 ) pH+pf Rg 0

From (36) and (37), we see that Cf can be obtained from the equation,
2

6RH3RH + C 2

6H R C f C f) = 0 (39)

PH-PfRg1 (-v pH±pfR% E

Equation (39) can be solved numerically to obtain Cf. It is noted that

Cf depends only on the shell parameters H and R and the density ratio Pf/P.

Since Cf is the quantity that is known and not tf, the equations (32) and

(33) are now reformulated with C being the independent variable and t(ý) and

V o() being the dependent variables. Thus,

dV
od dtd = d• p(•) (40)

andd ( dt
d(2 =) = (O) (41)

The new initial conditions are

t(z 1 ) = te (42)

Kite

and V(z) oe (43)
o 1 pH

Equations (40) and (41) are solved numerically. Finally, the maximum

plastic deformation U (t) can be obtained as,

Klt

U (t) e 0 _< t < t (44)
o 2pH -e
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t

and Uo(t) = Uo(te) + f V(t)dt 0 < t • tf

e

or Uo0(t) -= 2  + V_(i) d d zI f (45)
zI dC

The integral in equation (45) can be numerically evaluated after the numeri-
cal solutions V (i) and t(i) have been obtained.

For the special case in which zI coincides with if, the solution for
t > te discussed above is not valid. For this case, equations (32) and (33)
with (35) yield,

S= = if (46)

Klte

Vo(t) (t-te)(Z) + 1- -e (47)
0e 1 pH

where P(C) is defined in equation (32). Note 4(zl) < 0. From equation (47)
we see

tf = t 1 K, (48)e PHý(zI1)

From equations (47) and (44) we can show that

c(z1) 2 Klte
Uo(t) = 2 (t - t e) + 2pH (2t - te) (49)

Finally we have, for the maximum plastic deformation in this special case

K t2U (t K1te(1 K,150

U0 (tf) = 2pH (1- - pH((z1 )) (50)

NUMERICAL EXAMPLE

For a shell with H/R = 1/36, Le/R = 1/4 surrounded by a fluid of
pf/p = 1/10, the complete numerical solution is determined for the admissible
range of loads Pe* As is seen from figure 3, the range of Pe/Po that will
give rise to motion in the assumed phase is between: 1.33 and 2.97. The
same range for a shell in vacuum is 1.33 to 2.19. Figure 4 shows the final
maximum plastic deformation, Uo(tf), (non-dimensionalized as pHUo/Pot2 ) as a
function of Pe/Po. For the sake of comparison the corresponding curve for a
shell deforming in vacuum is also shown in the same figure.

In the numerical methods used, non-linear algebraic equations such as
(27) and (39) were solved by Newton's iteration method and the system of
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differential equations (40), (41) by a method using automatic step change

(ref. 5).
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THERMAL STRESSES IN A SPHERICAL PRESSURE VESSEL HAVING

TEMPERATURE-DEPENDENT, TRANSVERSELY ISOTROPIC, ELASTIC PROPERTIES

T. R. Tauchert

University of Kentucky

SUMMARY

Rayleigh-Ritz and modified Rayleigh-Ritz procedures are used to construct
approximate solutions for the response of a thick-walled sphere to uniform pres-
sure loads and an arbitrary radial temperature distribution. The thermoelastic
properties of the sphere are assumed to be transversely isotropic and nonhomo-
geneous; variations in the elastic stiffness and thermal expansion coefficients
are taken to be an arbitrary function of the radial coordinate and temperature.
Numerical examples are presented which illustrate the effect of the temperature-
dependence upon the thermal stress field. A comparison of the approximate solu-
tions with a finite element analysis indicates that Ritz methods offer a simple,

efficient, and relatively accurate approach to the problem.

INTRODUCTION

Modern engineering structures are often subject to thermal environments in
which the temperature causes significant variations in the thermal and mechani-
cal properties of the material. Over certain temperature ranges the material
may behave elastically, but have variable stiffness and thermal expansion char-
acteristics. In addition, modern materials of construction (e.g. composites)
often possess anisotropy and nonhomogeneity. While most classical thermoelas-
tic solutions are not applicable to situations involving temperature-dependent
anisotropic behavior, some progress has been made in this direction. For exam-
ple, the problem of a hollow sphere with temperature-sensitive isotropic elas-
tic properties has been studied by Nowinski (ref. 1) and Stanisic and McKinley
(ref. 2). More recently Hata and Atsumi (ref. 3) investigated the response of
a transversely isotropic sphere exposed to a sudden temperature rise on its in-
ternal surface.

In the present paper a transversely isotropic hollow sphere having temper-
ature sensitivity and/or initial nonhomogeneity is considered. The variability
of the thermoelastic properties may result from manufacturing processes, in
which case the properties depend upon position but not temperature, or the non-
homogeneity may be a consequence of the materials' temperature sensitivity.
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FORMULATION OF THE PROBLEM

Consider a hollow elastic sphere of inner radius r1 and outer radius r2$

exposed to a temperature distribution T(r) in addition to internal and external
pressures, pI and pII, respectively. Owing to the spherical symmetry of the

problem, the nonvanishing strain components depend upon the radial displacement
u according to the relations

du _ ue =-- e = ee=- i
rr dr (1r

Assuming transverse isotropy, the thermal stresses are related to the strains
and temperature rise by

A A A A (Tr)
rr 11 12 12 1

T
= A2 e rr+ A22 e 0+ A23 eee ý2(T,r) dT (2)

12 rr 22 ~ 3 e 6 (T,r)
aee 12 23 22 B2 (T,r)

in which A ij(T,r) denote the elastic stiffnesses and •i(T,r) are the stress-

temperature coefficients. Alternatively, the strains may be expressed in terms
of the stresses and temperature as

err 1 a11 a12 a12 aT 1 (Tr)

= 12 arr + a22 a + a23 a6 6 +f T 2•(Tr) dT (3)

0e al ara

ee a12 a23 am22 a2 (T,r)

where a ij(T,r) and ai(T,r) are the compliances and the coefficients of thermal

expansion, respectively.

For convenience in later operations the following dimensionless quantities
are introduced:

P= r/r 2  Pl r1 /r 2  v= u/r 2

S= T/T 0ql = Pl/ý qlli PlI /ý0To0(4

t pp = arr/ or° t• # = /o o T0to ee= e/%oT o

BJJ 0(0 pj (E), r)r)j oij 0i0

640



1 (E,) = ai(T,r)T 1

in which 0 denotes an arbitrary reference stress-temperature coefficient and

T represents some reference temperature.0

In formulating the problem through the use of energy principles, we re-
quire specification of the total potential energy of the sphere. For the case
of quasi-static loading, the total potential energy H consists of the strain
energy U plus the potential V of the external forces. General expressions for

E
the strain energy in anisotropic, temperature-sensitive, elastic bodies are
given in reference 4. Based upon these expressions the total potential energy
for a transversely isotropic sphere with strains given by equation (1) is

1= 418To• P1' B [Bl 12+2B12[y] 2

0 0 2Tr f[½l ~X 12 (.j [x]+(22+B231(~

d 00 E0 0

op 00

+ f E2 (0,p)dO f Y2 (Ep)d0 p2 dp-Pl2 qlV(P )+qq v(l
0 0

in which the integral expressions constitute the strain energy, and the terms
involving ql and qll represent the potential of the pressure loads.

A complementary variational approach to the problem, in which stresses
rather than displacements represent the varied quantities, involves the total
complementary energy. When tractions are specified over the entire boundary
of the body, the total complementary energy 1* is equal to the complementary
strain energy U*. From the general results given in reference 4 it can be
shown that for the sphere

H* 4Tý r3 [-2b llt 2 +t 12b t2)
Sf PP [ 1 2 tpp (t+ te) +½b22(#te)

P (6)

+b 23t tee+t Pf1(0,p)dO+ (t#+ tee) f 2(EP)d P2 dp

Before developing approximate solutions to the problem, it is noted that
the governing differential equation and natural boundary conditions can be de-
rived through direct application of the principle of minimum potential energy.
Requiring that the first variation of the total potential energy be equal to
zero (6IT= 0), and performing integration by parts, one obtains the displacement
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equation of equilibrium
2 dBlld dBl

B d2v +2 dv 2(B2+ B I2) v + +2d
11dP2 p dPJ 22 2312 72 dP dP dp P

(7)

=d- f y•o (Ep)dG+e 2 [yl(),P) -y 2 (Qp)]dO

and the natural boundary conditions

dv(PI) v(P 1 ) 0(P1 )

BII(Pl) dp +2B 1 2 (P) 1 P f Y1(0, pl)d= -q,1 0

(8)
0(1)

dv (1) v
B1 1(l) dp- 2B1 2 (1)v(l)-O yI(O'I)dO=-qll

0

Finding an exact solution to these equations does not appear possible for a
sphere of general nonhomogeneity.

RAYLEIGH-RITZ METHOD

In the Rayleigh-Ritz method a kinematically admissible displacement field
is assumed, and the principle of minimum potential energy is used to determine
unknown coefficients in the assumed solution. Here we shall represent the rad-
ial displacement v(P) by the power series

n i -M na pa m + ... +a +...+a pn
i=-m a -m o9)

in which the number of nonzero coefficients a. is arbitrary. Although it is.
1

only necessary to satisfy displacement boundary conditions when applying the
Rayleigh-Ritz method, generally it is desirable to satisfy traction conditions
as well. Relations (8) will be satisfied identically by the displacement field
(9) if the coefficients a. satisfy

1

f 1 (ai) = B11 (pI) 1 i a. p1  + 2B 1 2(Pl) 1 alp -f y (E'P)d®+q = o
6420

i 1 0
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These equations can be used in order to eliminate two of the coefficients a.
1

from the assumed solution. Alternatively, equation (9) can be retained in its
original form and conditions (10) satisfied by the method of Lagrange multi-
pliers, as described in reference 4. In this case the restrictions (10) are
written in terms of Lagrange multipliers X1 and X2 as

X1fI(ai)= 0, X 2f 2(ai)= 0 (11)

Necessary conditions for a minimum value of the total potential energy 11, sub-
ject to the subsidiary conditions (11), then are given by

a.= 0 (j = -m,. .. ,n) , 91 0 (s=1,2) (12)
3 s

where

T = f+ X1f1 + X2f2 (13)

Substituting the assumed solution (9) into the potential energy expression (5),
and differentiating ff with respect to a. as indicated in equation (12), givesJ

n 2
1 G.. a.+ YgiJs g X =H. (j =-m,...,n) (14)

i=-m s1 l s S

in which

G ji= "iBllj++2(i+j)B 1 2 +2(B 2 2 + B2 3)] pi+Jdp

H. f 1 [Jfly (Gp)+2y2 (0,0Y)d oJ+]dp+ q (15)

J i0d1 01 1  q1 -q 1 1  (5

gjl= Bl l (p 1 ) J-1 +2BI 2 (P 1)PJ- 1 , g 2  Bl l (l) j + 2B 1 2 (l)

The Ritz coefficients a. are then found by solving the algebraic equations (14)
together with the constraint equations (10).

MODIFIED RAYLEIGH-RITZ METHOD

The modified Rayleigh-Ritz method consists of assuming a state of stress
which satisfies equilibrium and traction boundary conditions, and then deter-
mining unknown coefficients in the assumed solution by applying the principle
of minimum complementary energy.

643



It is easily verified that equilibrium is satisfied if the dimensionless
stress components are expressed in terms of a stress function i as

tpp tP 68t e=½ + p] (16)

In this case the total complementary energy becomes

f* 4 Tor 3  f 1l b2 +p+d 2
oo2 =ul LiT Tb~iL~i i r( +b dS- b22 23 dpo o2PI2+ 

2 dP 
(17)

d f+ (P)d1+p 2 (['o)dJ p dp

We choose to represent the stress function 4 by the power series

n
at P- = a* p-ma+ +a* + " + a*Pn (18)

i=-m

in which the number of nonzero coefficients at is arbitrary. In order that ex-
pression (18) yields stresses which satisfy the traction boundary conditions (8),
the coefficients at must satisfy the relations

* n * i-i
fl(a?*) ai Pl + q= 0

(i (19)

f (a* a* +
2 ii IlI = 0

Proceeding as in the standard Rayleigh-Ritz technique outlined earlier, condi-
tions (19) are next written in terms of the Lagrange multipliers X* and A2*

1 2
Application of the principle of minimum complementary energy then leads to the
set of equations

n 2
I G. a I gj X*=H (20)

i=-m s=l j j

where

Gji= f [b 1 1 + (2+i+j)b 1 2 + ½ (l+i)(l+j)(b 2 2 +b 2 3 pi+jdp

H* =-f1f [E:l(00) + (I+J)2(0,p)]d pj+ldp (21)

6 P4
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P j-1 1

* =
gj i 1 gj2 =2

The coefficients a. and the Lagrange multipliers X* then are found by solving1 S

equations (19) and (20).

FINITE ELEMENT TECHNIQUE

The energy formulation developed earlier also provides a convenient basis
for constructing a finite element solution to the problem. In this case the
sphere is idealized as a series of N hollow spherical subregions. A typical
element j has an inner radius pi and an outer radius p. ; the corresponding rad-J
ial displacement components are denoted by vi and v., and the radial stresses

are taken to be (t p)i and (t o)., respectively.

It is assumed that the displacement varies linearly with p within each
element, so that

v(p) = j vi + v v

The thermoelastic properties are taken to be constant over each element, in
which case the following average values will be used

Bkl= ½Lkl(P+kl ~ii] r' ½L1 =kopd 0 ~ .

B(P O(Pi) ](3

Ek f E½ kk(OP.)dO+ f k(C(,P i)dC]

By analogy with equation (5), the total potential energy for element j is

II T 3-IrBav l~p'p 2 3 p
(J) = 47r f -1½ B+B J +3 vi

P j [l l B 2 + (dfv ~ B- - 2

(24)-dv=4ý 2fP dp v----](Y] 2 2 2 23]P(4

-1d +a 1-2½CEr1,+E )p 2dp +p.2 (t ).v.-p (t ) v.ldp _ p 1 1 2 1 PP11. J PP JJ

Substituting equation (22) into (24), and minimizing HO) with respect toy.
1

and v. gives

2 31 3 3 2 3
J 2 (pB-p. ) _ (p3-3pjPi2+2p3 )

-Pi (t pp)i- 3(pj-Pi i 3(P j-Pi r 2=k v i+kl2 v (25a)
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3 3 3 2 3
2 (p. -p. (p . -3P iP. +2P.i )

p (t ). --- + 1. + . = v+k V (25b)
j pp j 3(Pj-Pi) 1 3(pj-Pi) 2 12 i 22vj

where the element stiffness coefficients k.. are1J

(P3 3 3 2(p 3 3 2 I) 2p-
ke11 30_i)i2 -11 30_i)i2 B12 + 11(B 22 +B23)

(P.3 -pi ) _ 2(p. 3-3p.p. 2+2P.) 3 2 (p.-p.)
k22 3( - 112 B1 - 2 B 1 2 B (B 2 2 + (26)

3(p-P)3 j-i) 3

k (P3- P) + (Pj-Pi) (B2 + B13-2 B

12 3(3j-i)2 22 2312

Application of equations (25) to each of the N elements provides a system of
2N linear equations for the N+ 1 displacement components and the N-1 interface
stresses. The interface stresses can be eleminated, resulting in a set of N+ 1
equations for the unknown displacement components.

NUMERICAL EXAMPLES

To illustrate the influence of temperature-dependent material properties
upon the thermoelastic response, and at the same time to demonstrate the appli-
cability of Ritz methods in thermal stress problems, numerical results are pre-
sented for a sphere subject to various temperature and pressure conditions.
The ratio of the sphere's inner and outer radii is taken to be p1 = 0.8. It is
assumed that the body is initially homogeneous, and that the thermal expansion
coefficients vary linearly with temperature, while the elastic stiffnesses ex-
hibit a quadratic variation. In particular we let

o i o c2)
0i ( (l+bG), Bij iB, (1- co (27)

in which b and c are constants. The initial (zero-temperature) thermoelastic
coefficients are taken to beo o 4 o 4

B0 = 3.0 x 104 B0 = 1.0 x 104 B2 +B23 = 31.0x104
11 12 22 23 "

(28)0 0

Yl = 1.0 Y2 = 1.5
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These values are representative of certain fiber reinforced composite materials,
reinforced in the circumferential (c and e) directions.

As a first example let us consider a sphere subject to a uniform tempera-
ture rise 0= 1 and zero internal and external pressure. Values of the thermal
displacements and stresses found using the Rayleigh-Ritz and the modified Ray-
leigh-Ritz methods are compared with the exact solution (ref. 5) for the limit-
ing case of temperature-independent properties (b=c=0) in Table I. It is evi-
dent that the accuracy of the approximate solutions generally improves as addi-
tional terms are included in the assumed solution. When the Rayleigh-Ritz ap-
proximation contains 3 independent coefficients (i.e., a total of the 5 coeffi-
cients a_ 2 , a1-, a 0 , a1 , a2 of which 2 may be eliminated using the boundary condi-

tions), the value of the maximum stress amplitude Jt#p(0.8)I exceeds the exact
value by 0.9%. For 5 independent coefficients the error is reduced to 0.3%. On
the other hand the maximum stresses predicted by the modified Rayleigh-Ritz pro-
cedure using 3 and 5 independent coefficients are 2.3% and 1.6% smaller than the
exact value. When the powers of p in either the standard or modified Rayleigh-
Ritz approximation are taken to be -5, 4, and 1, the computed values of the dis-
placements and stresses are exact, since the assumed solution then has precisely
the form of the exact solution.

Results of finite element analyses are compared with the exact solution to
this same problem in Table II. Naturally the accuracy of the finite element
solutions improves as the number of independent displacement components is in-
creased. When the finite element solution is based upon 3 independent displace-
ment components (2 elements), the maximum stress It#p(0.8)I exceeds the exact
value by 2.6%. The error is reduced to 0.7% when 13 displacement components
(12 elements) are used. However for this problem it was found that the compu-
tations required to achieve a given level of accuracy were less time consuming
when one of the Ritz methods was used than when the finite element technique
was applied.

To demonstrate the influence of temperature-dependent behavior upon the
circumferential stress in the sphere, Ritz solutions based upon 5 independent
coefficients are plotted in figures 1-3. Each of the figures shows the stress
distributions associated with various values of the temperature-dependent pa-
rameters b and c for temperature alone and for combined temperature plus inter-
nal pressure. Figure 1 shows the stresses induced by a uniform temperature
rise 0=1. Results for the linearly varying temperature distributions 0=5-5p
and 0 =-4+5p are given in figure 2 and 3, respectively. Each of the Ritz solu-
tions plotted in the figures was compared with a finite element solution based
upon a 12-element model. Agreement between the values of the maximum absolute
stress predicted by the two methods varied between 0.1% and 1.6%, with one ex-
ception. In the case of 0=-4+5p and zero internal pressure qi=0 (fig. 3) the
maximum stress was relatively small, and the discrepancy was nearly 5.0%.

As would be expected for the purely temperature loadings (qi=qIi=0), the

maximum stresses diminish with increasing values of c(i.e., with decreasing
stiffness), whereas they become larger with increasing values of b (increasing
thermal expansion). The influence of temperature sensitivity is less predict-
able in the case of combined temperature and pressure, since both the pressure-
induced and temperature-induced stresses are affected by the nonhomogeneity.
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Table I. Ritz approximations for the thermal displacements and

stresses caused by a uniform temperature rise O= 1 when b= c= 0.

'Rayleigh-Ritz Modified Rayleigh-Ritz Exact

Powers of p -2,-1,0,1,2 -3,-2,-l, -2,-1,0,1,2 -3,-2,-l, -5,4,1

0,1,2,3 0,1,2,3

No. of indep. coefs. 3 5 3 5 3

Radial displ. v(0.8) .058 .059 .066 .064 .060

x 107 v(0.9) .355 .355 .354 .354 .354

v(l.0) .636 .634 .633 .632 .634

t pp(0.8) 0 0 0 t 0

Radial stress t p(0.9) -. 084 -. 091 -. 092 92 -. 091

pptp (1.0) 0 0 0 0 0

t (0.8) -. 948 -. 943 -. 918 -. 925 -. 940

Circumf. stress t (0.9) .001 -. 001 -. 006 -. 003 -. 003

to(l.0) .762 .757 .755 .750 .758

Table II. Finite element solutions for the thermal displacements and
stresses caused by a uniform temperature rise 0 = 1 when b = c= 0.

Finite Element Exact

No. elements 2 4 6 12 -

No. indep. displ.
comps. 3 5 7 13 -

v(0.8) .062 .060 .060 .060 .060
Radial displ. .356 355 .355 355 354

x 107 v(0.9)...

v(l.0) .636 .635 .635 .635 .634

t (0.8) -. 105 -. 064 -. 046 -. 025 0Pp

Radial stress t (0.9) -. 073 -. 092 -. 092 -. 091 -. 091Pp

t pp(1.0) -. 033 -. 022 -. 016 -. 008 0

t (0.8) -. 965 -. 959 -. 954 -. 947 -. 940

Circumf. stress t (0.9) .012 .001 -. 001 -. 001 -. 003

to (1.0) .750 .752 .753 .756 .758
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ANALYSIS OF PANEL DENT RESISTANCE

Chi-Mou Ni
General Motors Research Laboratories

SUMMARY

An analytical technique for elastic-plastic deformation of panels has
been developed, which may be employed to analyze the denting mechanisms of
panels resulting from point projectile impacts and impulsive loadings. The
correlations of analytical results with the experimental measurrments are
considered quite satisfactory.

The effect of elastic springback on the dent-resistance analysis is found
to be very significant for the panel (122 cm x 60.9 cm x 0.076 cm) subjected
to a point projectile impact at 16.45 m/sec. While the amount of springback
decreases as the loading speed increases, the effect due to the strain-rate
hardening of material, such as low-carbon steel, becomes more dominant and
has been demonstrated in the analysis of dent resistance of a rectangular
steel plate impulsively loaded.

INTRODUCTION

One of the primary concerns in exposed panels of automotive vehicles and
aircraft is their ability to resist damage by denting during fabrication and
in service. Generally speaking, the mechanical properties of the material,
panel geometry, and loading conditions are the primary factors in determining
panel dent resistance. These factors are related in a complicated way,
however; therefore, it is not easy to use an intuitive approach to develop
their mathematical relationship, and we must resort to an analytical approach
instead.

Generally speaking, the loadings which dent the panel are somewhat random
in nature. Dents may be produced in automotive panels during fabrication, for
example, by the impact of one panel on another and by dropping a panel onto a
holder or conveyor projection. In service, dents are commonly produced by
flying stones, door impact in a parking lot, and even hail. For aerospace
structures, quite often the exposed aircraft components are subjected to
impact loadings, including hail and runway stones, etc. Nevertheless, in this
study it is assumed that the loading conditions may be characterized with
(a) projectile impact over a period of time; and (b) an impulse having a very
short duration.

In this study, an analytical approach is developed to analyze the denting
mechanism of panels under impact and impulsive loadings. Panel denting is
usually the consequence of ductile plastic flow. The dent resistance is
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referred to as the panel-dent strength, measured in terms of permanent plastic
deformation (not the deformation resulting from any elastic buckling). Over
the past few years, the analysis and prediction of large dynamic and permanent
deformations of structures caused by impact and impulsive loadings have
received increasing interest (refs. 1 to 6).

Three analytical approaches to these problems are commonly used. The
rigid-plastic idealization (refs. 1 to 2) has been frequently applied to analyze
impulsively loaded beams, rings, flat plates, and axisymmetric cylindrical
shells. There are limitations to this idealization, however. For instance,
once the large deflection or geometry change is taken into account, a rigid-
plastic analysis may be too complicated to use (ref. 2). Furthermore, the
rigid-plastic analysis is applicable only to problems for which the initial
kinetic energy is much larger than the maximum elastic strain energy. Another
approach often employed for structural problems is the energy method (ref. 6)
in which the energy input to the structure is equated to the plastic work
done. The success of this method depends on how reasonable an estimate is
made of the primary mode of deformation. For a complex structure under
arbitrary transient loading, it can be difficult to make such an estimate.

The deficiencies in the two analytical methods can be skirted by various
numerical methods, such as the finite difference method (refs. 3 to 5) and the
finite element method (ref. 5). In this paper, a numerical scheme extended
from Reference 4 is employed to analyze the panel denting as a result of being
subjected to impact and impulsive loadings.

THEORETICAL FORMULATIONS

Minimum Principle

Consider a body of a continuum occupying in its natural state a region
Vo and bounded by a piecewise smooth surface, A . The body is subjected to

time-dependent body force, Fm (per unit mass) and Lagranian surface traction
(per unit area) Tm over that part of the initial surface area AT . At time
t , let {Uk} be the displacement vector of a particle of the body which has an
initial position of {Xk} in a curvilinear coordinate system. The displacements
are prescribed over that part of the boundary surface, Au The deformation
of the body may be described in terms of the covariant components of the
Lagrangian strain tensor, EkL , defined by

EkL = ; (Uk;L UL;k kUML) (;)

Herein, a covariant derivative of a variable with respect to Xk is
designated by the semicolon in the subscript position, as ( );k , and the
repetition of an index in a term indicates summation. The Lagrangian strain
may be expressed as the sum of two parts: elastic strain, EeL and plastic
strain E•L . It is postulated that the constitutive relationships, in
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terms of the symmetric Kirchhoff stress tensor SkL , may be plastic-strain
velocity dependent but are not influenced by strain accelerations. In other
words, it is assumed that

SkL SkL (2)

in which e is the temperature and EM is the velocity rate of plastic
straining. The contravariant components of the Kirchhoff stress tensor, SkL
satisfy the boundary conditions

skL ( +Nk T A 3
S gML kH UM;L )NkT on A (3)

in which Nk is the covariant outward unit normal to A , and gML is the
metric tensor.

It has been shown (ref. 7) that the time acceleration field,
UM = D2 UM/Dt 2 , of the body, which has known or predetermined displacement and
velocity fields at time t, is distinguished from all kinematically admissi-
ble ones by having the minimum value of the following functional:

I f SkL dV + -If po nMdV- fTUMdA - f p dV
kL o 2 o H o T(4)

in which po is the initial mass density. The minimum principle is valid for
continuous as well as sectionally discontinuous acceleration fields. Ordinari-
ly, it is sufficient to use the first variation with respect to the accelera-
tion, 6accI = 0, to establish governing equations or to solve a problem by a
direct method of variational calculus.

Kinematics

Consider a cylindrical-shell panel of mean radius R , thickness h
axial length L , and arc width Rý. Let (x,y,z) be the axial, circumferential
and (outward) normal coordinates, and (UxUy,Uz) be the corresponding
physical components of the displacement vector of a point in the shell,
respectively. Then, by utilizing the Love-Kirchhoff assumption for thin
shells and by neglecting wave propagation through the thickness, the displace-
ment components of a particle can be expressed in terms of the corresponding
displacement (and its derivatives) of the middle surface as

Ur u - ZWx
S Rz (wy + v) ,Y (5)

U =w
z

where u, v, and w denote the axial, tangential, and (outward) normal dis-
placement components of a point on the mid-surface. Having the displacement
components, the strain accelerations can then be defined as
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+ = (1+ u,x+w, - w +u ±x v ý±2
xx Ux) xx x iXx x x

E = 2U, ± (1 + V, - *)V,x + (v + W,y)Ux + (±+ U,x)u,

xy -2 L'Y x x y

+ Vx(V, y - + w, ( (V +4, ) z(2, + .. , ) + u, U,

+ V,x(V,y - w)] (6)

S= U, y,y + (1 + Vy - w)(V,y - ý) + (v + W,y)(Wy + V)

- z(,y + V, ) + 2+ (V, - w)2 + (v + W, )2
z(,yy y 9y y y

Constitutive Relationship

For an isotropic and homogeneous material, the elastic stress-strain rela-
tionship may be reasonably expressed by

S= [(1 + ')) - V6kLSI (7)

where ,v is Poisson's ratio and 6 kL is the Kronecker symbol. The plastic
stress-strain relationship based on the isothermal, incremental theories of
plasticity may be derived from Drucker's postulate of positive work in plastic
deformation. Drucker's postulate establishes two requirements:

(a) The loading surface is convex and (b) at a smooth point of the yield
surface, the plastic strain rate vector is always directed along the normal
to the loading surface or

S S fafor f= and Sf >0askL asMN MN aSMN MN

kL f (8)
0 for f < 0 or asMN SMN < 0

where G is a scalar proportionality function depending on the state of the
material and may be determined, based on the concept of isotropic hardening, as
(ref. 4)

G 3 = i - for f = 0 and 'f 0MN>G 4J2(Et E as SMN >0

(9)
0 for f < 0 or SM MN-
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in which Et , a function of J 2 , is the tangent modulus which may be obtained
from the uniaxial Kirchhoff stress vs Lagrangian strain curve of the material.
Herein, a generalized J 2  criterion based on the Mises yield function is
employed for the shell problem as

f = J2 - K2 = I S23 S + S2 S2 - K2 = 0 (10)
3 ( xx yy yyih+uxy~K

where K is the strain-hardening parameter.

It has been long recognized that the strain-rate sensitivity of material
may be one of the important factors affecting the dynamic responses of elastic-
plastic structures. A generalized formula which accounts approximately for
the multiaxial behavior of a strain-rate sensitive material is employed and
expressed as

e (e

0

where Oe (effective stress) = (2 Sij. = - ij

• (effective strain rate) =
e 3 ij i

D and p = material constants

Finite.-Difference Energy Method

A numerical approach based on the finite-difference direct method in
conjunction with the minimum principle (as shown in Eq. (4)) is developed to
analyze the large dynamic responses of cylindrical shell panel under impact
and impulsive loadings. To make the amount of computation tenable, an
idealized sandwich shell having a number of discrete, thin load-carrying
sheets made of a work-hardening material is employed. The indices i, j,
and k are introduced to indicate the spatial position of a point in the
shell as follows: x = iAx, i = l,...m; y = jAy, j = l,...n; z = kAz, k =

0, ±1,.. .±; where Ax, Ay, and Az are chosen spacings of coordinates x, y, and
z, respectively. The spatial derivatives of accelerations and displacements
are replaced by discrete values of accelerations and displacements through a
central finite-difference scheme. The functional I , by Equation (4), may be
replaced by a finite summation through using the trapezoidal rule for the
integration. The explicit expressions for accelerations at any time
step t = qAt may be obtained by minimizing the functional Iq with respect to
the discrete accelerations as follows:

Iq DI q ýIq
=0; - = 0; - = 0 (12)

uj WJ 1,j
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The discrete accelerations must also satisfy the boundary conditions for
the clamped cylindrical shell panels which require that three displacement
components and their slopes all have a value of zero.

It is assumed that at time t = qAt, the displacements, velocities, strains
and stresses, have been previously determined at all nodal points of the
domain. Then Equation (12) may be used to determine the accelerations U.q .. q ,J
Vi j, wi " at time t. Subsequently, the displacements at time t + At may be
obtained Vy the central difference approximation. Knowing the displacements at
t + At, the strain increments that occurred in the time interval (t + At - t)
may also be determined by using the central difference scheme. Furthermore,
the corresponding stress increments may be obtained by the constitutive rela-
tionships provided that the condition of loading or unloading is known.
This may be accomplished by first calculating a set of stress increments
corresponding to G = 0. Then the loading criterion, df • 0, may be checked
and the appropriate value of G in Equation (9) is used in the calculation of
the correct stress increments. By repeating the foregoing steps for each
subsequent time increment, the entire history of deformation of the shell
panel may be obtained.

Impact and Impulsive Loadings

In the case of projectile impact, the actual situation could be very
complex and not amenable to analysis due to the irregular shapes of the panels
and the indentors and their interactions during deformations. However, for
simplicity the projectile is considered here to be rigid and small in size
compared with the dimensions of the panel. In engineering analysis, there are,
in general, two approximate methods to incorporate the impact loadings by the
projectile into the mathematical system: one is termed "Collision-Imparted
Velocity Method" (ref. 8) and the other, the "Collision-Force Method" (ref. 8).
For the "Collision-Force Method," the contact force is included in the
analysis; the contact force is neglected in the "Collision-Imparted Velocity
Method," which makes it much simpler to implement. In Reference 9 it has been
shown that in cases of small ratio of beam mass to impactor mass, these two
methods may offer the same degree of accuracy in solutions of a simply sup-
ported beam under central impact. In this study of panel dent resistance, a
point-projectile-impact loading is assumed in the analysis. Furthermore, the
impactor mass is considered as rigid and attached to the panel at the impact
point and then an initial velocity equal to the original impactor velocity is
assumed at the panel impact point. Subsequently, the motion of the panel is
then analyzed.

In the low-speed impact situation, the stress due to the impactor is
dispersed continuously throughout the panel. As impact speed increases,
the regions not in the immediate vicinity of the impact point will not
immediately feel a stress, and it will cause more localized deformation at the
impact point. In order to simplify the analysis for the very localized dents
as a result of very high speed impact, a small portion of the panel around
the impact point under high-intensity impulse is analyzed. In general, a
solid under an impulsive loading of very short duration may be considered to
be equivalent to a solid moving with a prescribed initial velocity.
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RESULTS AND DISCUSSION

Since the primary concern in the analysis of panel dent resistance is the

dent size, which is, in general, inversely proportional to panel resistance to

loading, the dent size (or permanent set) of the impacted panel is here used

as an index to calibrate its resistance to denting. As mentioned previously,

the actual loading conditions are usually not deterministic and vary widely

with the manufacturing and service environments of the panel. In any event,

the analytical technique presented herein may be employed to analyze the panel

dent sizes resulting from point projectile impacts and impulses, which should

provide some fundamental understandings of panel dent resistance.

In order to validate the present analytical technique, numerical results

have been obtained for the dynamic responses of a cylindrical shell panel

subjected to a point projectile impact and of a rectangular plate subjected to

impulsive loading:

The cylindrical shell panel clamped on its boundaries is made of aluminum
alloy 6061-T6 and has the geometric properties as shown in Figure 1. The

material has a mass density of 2750 kg/m 3 and a Poisson's ratio of 1/3. The
uniaxial stress-strain relationship may be approximated as a bilinear rela-
tionship with E(Young's modulus) = 8 x 10 1 0 N/m 2 , Et(tangent modulus) =

10.7 x 10 7 N/m 2 and ao(initial yield stress) = 27 x 10 7 N/m 2 . The panel is
impacted by a 0.45 kg steel ball (0.79 mm in diameter) at 16.5 m/sec. Figure 1

illustrates the analytical results of the central deflection-time relationships
of the impacted panel, and the measured maximum deflection and permanent

deflection in experiment. It should be noted that the maximum deflection and

the permanent deflection predicted are larger than those determined experi-
mentally. The reason for this overestimation of deflections at the impacted
point may be that in this analysis, the projectile is assumed to be a point
so that the predicted deformed profiles around the impact point are deeper than
those observed in experiment. It is believed that the correlations can be

improved by matching the contact surface instead of the point in the analysis.
As one can see in Figure 1, however, the analytical results obtained can still
be reasonable enough to provide understanding of the panel dent resistance.

Indicated in Figure 1, the impacted point of panel with the projectile reaches

its peak deflection by elastic-plastic deformation, and then springs back to

its saddle point, at which time the projectile and the impacted point of panel

separate, and finally it oscillates about its permanent deformation; the
permanent deformation is defined as the dent. When the panel reaches peak
deflection, the kinetic energy of the projectile before impact is trans-
formed within the panel in two parts, elastic strain energy and the work of
plastic strain. Since the elastic deformation is assumed to be reversible,
the panel springs back, causing rebound of the projectile. The elastic strain

energy released is related to the elastic stiffness of the panel, which
depends on the Young's modulus, panel geometry, and on the impact speed.

Evidently, for this case, the elastic springback plays an important role in

determining the degree of dent resistance.
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Furthermore, under certain circumstances, the impact speed can be so high
that only a very localized dent occurs, with insignificant springback
(Ref. 10). This phenomenon may be analyzed and reproduced by only treating the
immediate impacted area being subjected to high intensity of impulse, which
would simplify the analysis and still provide enough insight of the panel dent-
resistance. Also, in some other circumstances, the loading conditions may be
explicitly characterized as impulsive loadings with relatively short durations.
To understand the denting mechanisms of panel resulting from impulsive load-
ings, the present analytical technique has been applied to analyze the dynamic
responses of a rectangular plate subjected to a uniform impulse with equivalent
initial velocity of 91.4 m/sec. The geometric dimensions of this plate are
shown in Figure 2 and the material is aluminum alloy 6061-T6, whose mechanical
properties are described previously. Presented in Figure 2 are the analytical
results of the central deflection-time history and the experimentally measured
permanent set (Ref. 11) for comparison. It is evident that the predicted dent
depth of the center agrees very well with the test data. Note that the spring-
back is insignificant compared with the previous case. The amount of spring-back
back generally depends on the Young's modulus, panel geometry, and the impact
speed. As the springback effect decreases as the impact speed increases, the
strain-rate hardening of material may become dominant when deformation rate
increases. The degree of strain-rate hardening can vary with material and
temper condition. For example, low-carbon mild steel generally has greater
strain-rate hardening than aluminum alloy and high-strength steel.

Finally, to quantify the effect of strain-rate hardening of steel on the
panel dent-resistance, the central deflection-time relationships of a rectan-
gular steel plate (as shown in Fig. 3) subjected to a uniform impulse of
61.32 m/sec have been obtained by using the present analysis with three sets
of strain-rate coefficients of Equation 11, and the test data (Ref. 11) for
comparison. The steel has a mass density of 7830 kg/m 3 , and a Poisson's ratio
of 0.28. The uniaxial stress-strain relation may be approximated as a
bilinear relationship with E = 21 x 10 1 0 N/m 2 , Et = 10 3N/m 2 and Go =
21.7 x 10 7N/m 2 . As one can see in Figure 3, the dent depths (or permanent
sets) vary significantly with the degree of strain-rate hardening.

From the aforementioned two loading conditions under which dents of panels
occur, it is quite evident that how two important factors--panel elastic
springback and strain-rate hardening of material--influence the panel dent-
resistance. In addition to these two factors, other factors such as strain-
hardening, material density, and yield stress could be important.

CONCLUDING REMARKS

An analytical technique for elastic-plastic deformation of panels has
been developed, which may be employed to analyze the denting mechanisms of
panels resulting from point projectile impacts and impulsive loadings. The
correlations of analytical results with the experimental measurements are
considered quite satisfactory.
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The effect of elastic springback on the dent-resistance analysis is found
to be very significant for the panel (122 cm x 60.9 cm x 0.076 cm) subjected
to a point projectile impact at 16.45 m/sec. While the springback decreases
as the loading speed increases, the amount due to the strain-rate hardening of
material, such as low-carbon steel, becomes more dominant, which has been
demonstrated in the analysis of dent resistance of a rectangular steel plate
impulsively loaded.
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uniform initial velocity of 61.32 m/sec, showing the strain-rate effect
via parameter D.
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plate subjected to a uniform initial velocity of 121.9 m/sec.

663



NEUTRAL ELASTIC DEFORMATIONS

Metin M. Durum
Roy C. Ingersoll Research Center, Borg-Warner Corp.

ABSTRACT

Elastic bodies or systems may not require external energy for certain
finite and continuous deformations. Conditions providing these kinds of
effortless, or neutral, deformations are the subject of this paper.

INTRODUCTION

If the total strain energy in a solid body or system remains constant
during its elastic deformation, a neutral equilibrium state is obtained.
No external effort then is needed for this deformation assuming the
supports or guides are frictionless. If friction is considered during
such a deformation, then the losses due to friction would introduce the
only demand for external effort. Although an elasticity approach to
determine the strain energy level-would be extremely difficult for
large deformations, simplified approaches such as beam or shell theories
offer practical solutions.

Time independent stress or strain fields in Eulerian coordinates may
be the simplest form of neutral deformation. In this special case, a
stress or strain dependent boundary also remains fixed, and the de-
formation takes place in a rigid envelope similar to a steady fluid
flow. These non-apparent deformations can be identified by inspection
as illustrated in the following examples. It is generally not difficult
to determine whether or not the macroscopic condition of a system, and
consequently its stress field, are time independent.

PRACTICAL EXAMPLES FOR NEUTRAL DEFORMATIONS

Flexible Shaft and a Spinor Problem

An initially straight, flexible shaft or rod having cross sections of
equal principal moments of inertia and being guided or supported along
a fixed curve can be rotated freely about its deformed axis (fig. 1).
During this deformation, the stress distribution in the rod (not nec-
essarily prismatic) is generally time dependent. However, since the
bending stiffness around any cross section is constant, the deformed
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rod axis (elastica) and, consequently, the total strain energy remain time
independent within the approximations of beam theory. The stress dis-
tribution also becomes time independent if the rod is axisymmetrical.
A steady torque transmission through a guided flexible shaft does not
change the foregoing discussion, and the deformation still remains neutral.

As an aside, it can be noted that if the angular velocity vectors at A
and B ends are collinear and in opposite direction (WB=-Wa) and if the
supports' frame is rotated by flF=-W then the absolute velocities become
•A=0 and fl =-2 WA= 2flF. This spinor ýroblem (ref. 1) was employed to pro-
vide a direct connection between a rotating and a fixed platform which
was patented in 1971 (ref. 2).

Free Invertible Rings

If the free ends A and B of a flexible rod are bonded together, a free
invertible ring is obtained. Without the guides, the ring becomes
circular (fig. 2).

A free invertible ring can also be obtained by bonding two molded rings
of certain cross sections (such as semi circular sections) after invert-
ing one through 1800 (fig. 3). The split ring idea was applied to rol-
lable belts and patented in 1928 (ref. 3).

In general, the uniform inversion of a non-strained slender ring about
a given circular axis requires a uniformly distributed torque and a
uniformly distributed radial load. The torque is a sum of the first
and second harmonic functions of toroidal displacement (8) while the
radial load is a first harmonic function of toroidal displacement (ref.
4 and author's disclosure, Oct. 1973). When two bonded rings are being
inverted about their common circular axis, the second harmonic torques
can be eliminated by a suitable choice of cross sections. Also, the
sum of the first harmonic torques on the radial loads can be eliminated
by introducing a difference of 1800 between the inversion phases of
the two rings.

Belt and Pulleys

During a steady load transmission, the stress distribution in a uniform
belt (fig. 4) remains the same, ignoring non-elastic properties of con-
ventional belt materials. The deformation of this belt can, therefore,
be called neutral. In this system, load transmission requires friction
between the belt and pulleys, but then the microslips at their contacts
produce an unavoidable small resistance.

If a belt of non-uniform stiffness is considered, its deformation will
no longer be neutral.
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Rolamite (ref. 5)

Two rollers wrapped by a flat band move almost freely between parallel
guides (fig. 5). The pretensioned elastic band presents constant stress
and strain energy level in the straight portions (AB + CD) and time in-
dependent stress distribution in the wrapped portion (BC).

Rolling Elements

Stress distribution in load-carrying rolling elements such as locomotive
wheels remains constant in a transported frame. A small rolling resist-
ance accompanies their neutral deformation, but this is mainly due to
microslips at wheel-track contacts (ref. 6).

Some common load-carrying elements, e.g. radial ball bearings, undergo
a non-neutral deformation because of a cyclic load and stress variation
at ball-race contacts.

CONCLUSION

A neutral deformation concept is defined, and two basic rules are employed
to identify a large deformation of this kind with or without help of addition-
al assumptions. Some practical applications have been presented. It is hoped
that further investigations in this field may lead to new developments.
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Figure I.- Flexible shaft.

Figure 2.- Ring made of rod.
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Figure 4.- Belt and pulleys.
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A STUDY ON THE FORCED VIBRATION

OF A TIMOSHENKO BEAM

Bucur Zainea

SUMMARY

By using Galerkin's variational method we build up an approximate solution

for a system of two differential equations with linear partial derivatives of

the second order. This system of differential equations corresponds to the

physical model, known in the literature as the Timoshenko Beam. The results

obtained can be finally applied to two particular cases representing respectively:

the case of a beam with a rectangular section, with a constant height and a basis

with a linear variation:

the case of a beam with a constant basis and a height with cubic variation.

INTRODUCTION

We are taking into consideration a heterogenous elastic straight beam pos-

sessing variable geometrical and mechanical characteristics all along the beam.

We are considering the small, cross-cut non-damping forced oscillations.

The mathematical model chosen to be subjected to analysis consists in a system

of two linear equations with partial derivatives of second order, corresponding

to the physical model known in the literature under the name of Timoshenko Beam.

This model is more exact than the classical one usually employed in the engineer-

ing calculations, that is the Euler-Bernoulli model. The difference between them

consists in the fact that while for the Euler-Bernoulli model only the deforma-

tions given by the bending moment or by the translation inertia are taken into
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account, in the Timoshenko model the transverse shear and the rotational inertia

are also taken into consideration. As a result the Timoshenko model reflects

more exactly the physical reality. It is well-known that (ref. 1) the differ-

ences between the two theories become significant in the case of (relatively)

short beams and this cannot be neglected any longer.

Although the literature referring to the dynamics of the Timoshenko Beam

is abundant enough, the matter of the non-damping beam has been insufficiently

treated.

In the present paper we try to determine the approximate solutions of the

phenomenon by means of the Galerkin variational method. We are of the opinion

that the above mentioned method is most suitable in solving the subject consid-

ered. The choosing of the system of coordinates required by the Galerkin method

assures the convergence of the obtained solutions.

SYMBOLS

6(x-0) Dirac function

ý(p,g) Euler's Beta function: 3(p,g) xP-l1 (l-x) g-dx
0

K coefficient of the form of the section

G cross-cut modulus of elasticity

P density of material

E longitudinal modulus of elasticity (Young)

A(x) area of cross-cut section

672



I(x) moment of inertia of cross-cut section

W(x,t) cross-cut displacement

S(x,t) rotation angle

1

(f(x),g(x)) scalar product: (f,g) f f(x)g(x)dx

0

length of beam

V(x) time-independent cross-cut displacement

U(x) time-independent rotation angle

c•,X cross-sectional area parameters

moment of inertia parameter

C00[0.,1] class of functions defined on 0 to 1

THE DIFFERENTIAL EQUATIONS OF THE PHENOMENON

The differential equations for the phenomenon are as follows: (ref. 2)

Solutions for the differential equations are determined as follows:

i(2)Q-J -K)Q
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for boundary conditions

and f(x,t) is a perturbance force, a mobile, but concentrated force for a unit

magnitude:

By considering equation (2) the system of equation (1) becomes two differ-

ential equations of the fourth order for V(x) and U(x) as follows:

Jý DQ7 -QqyUA-c ~ Q (4)

V + (7k (5)

The differential equations (4) and (5) for the following two cases are as

follows:

Case67: N\k74Q1\-V-A 
_
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THE APPROXIMATE SOLUTION

We shall integrate the differential equations (6), (7), (8), and (9) by

means of the Galerkin method.

In the case of boundary conditions of equation (3) we shall consider t=unit

which is always possible by

Using the Galerkin method, we shall determine an approximate solution for

equation (6) as follows:

(10)

We choose ý k(x) of the form (ref. 3)
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The system of coordinate functions cpk(x) has to satisfy the boundary

conditions of equation (3) which become equivalent with the following

conditions:

UQP UA (J

The approximate solution (10) becomes:

The ' constants are determined out of the following algebraic system:

where L is the left part of equation (6), and g is the right part of the

same equation, that is:

%67
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ON

The system of equation (11) is a non-damped algebraic system of n equa-

tions with n indeterminates. This system is compatible because the determi-

nant formed with the coefficients of the undeterminants is a Gramm determinant

of a linear independent system of functions. For the calculation of the scalar

product (L k,.j) and (g,%j), we have kept in view the following points:

We have used the Euler's Beta function

A

We have used the following formula (ref. 4) in calculating the scalar

product:

if then

For equation (7) with the boundary conditions of equation (3) which mean

V(o)=V(1)=o we are going to give an approximate solution of the following form:

7(13)
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where the constant k is drawn from the following algebraic system:

k^qz

where L is the left side of equation (7) and g is the right side of the

same equation.

Analogous to equation (8) we build up an approximate solution of the follow-

ing form:

where the y constants are determined from the following algebraic system:

where L is the left side of equation (8) and g the right side of the same

equation.

Finally, for equation (9) we build up a solution of the following form:

where the 6k constants are determined from the following algebraic system:

where L and g are the left side and right side of equation (9).
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As a conclusion to case 1 the approximate solutions built up by the Galerkin

method are the following:

and, for case 2 the approximate solutions are the following

PECULIAR CASES

In the following lines we shall use the obtained solution for two particular

cases, which will be also an indirect checking of the accuracy of the obtained

results.

We build up the first two approximations ýi; ý2 and respectively WI;

W 2 for the following situations:

They represent respectively the case of a beam with a rectangular section, hav-

ing a constant height and a base with a linear variation, and the case of a

beam with a constant base and a height with a cubic variation and this because,

from an applicative point of view the beam sections are in many cases considered
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rectangular. Case (a) The equation (6), if we consider (14) is reduced to the

following equation

The first and second approximations are respectively:

If we compare 41 with 2 for a rectangular beam made of steel we come

to the conclusion that the two approximations are comparable: 41 = ý2 for

certain X values and for certain x values

[ 0,1 0,2 0,3 0,4 0,5

x 0,252 0,541 0,528 0,573 0,525

This conclusion results from the following calculation:

The aicU2  constants are determined from the following algebraic system:.
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where

and for the steel in S.I. units

Equation (7) then becomes:

where 6
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The first and second approximations are

\o4'•. y• C- Q ; and

where

AA

4 A
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_ ~ x _ 0 , I 0 , 2 0 , 0 4_,

I uk

Because ~.''/ .jAthe conclusion

is made that the two approximations are comparable for certain Xvalues and

for certain x values such as

0,1 0,2 0,3 0,4 0,5
1 0,675 0,515 0,585 0,525 0,567

CONCLUSIONS TO THESE PECULIAR CASES

For equations (8) and (9) we come to the same result, that is: the first

two approximate solutions are equal for the given values of X for the same

value of x :0,5: 0 < x < 1 that is, the approximate solutions are comparable

among themselves in the vicinity of where the concentrated perturbance force is

1
applied: when x = ý = 2
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ENVIRONMENTAL EFFECTS ON POLYMERIC

MATRIX COMPOSITES

J. M. Whitney and G. E. Husman
Air Force Materials Laboratory

SUMMARY

Current epoxy resins utilized in high performance structural composites
absorb moisture from high humidity environments. Such moisture absorp-
tion causes plasticization of the resin to occur with concurrent swelling and
lowering of the glass transition temperature. Similar effects are observed in
composites. Data are presented showing the effects of absorbed moisture on
Hercules AS/3501-5 graphite/epoxy composites. Prediction of moisture
content and distribution in composites, along with reduction in mechanical
properties, are discussed.

INTRODUCTION

The glass transition temperature, Tg, of a polymer is defined as the
temperature above which the polymer is soft and below which it is hard. For
epoxy resins the Tg is the temperature at which the polymer goes from a
glassy solid to a rubbery solid. From a practical standpoint it is more appro-
priate to discuss a glass transition temperature region rather than a single
glass transition temperature, as the change from a hard polymeric material
to a soft material takes place over a temperature range. The concept of a Tg
is for convenience and refers to the temperature at which there is a very
rapid change in physical properties. As a result, there is no precise Tg.

It is well recognized (ref. 1) that the T of a polymer can be lowered by
mixing with it a miscible liquid (diluent) that has a lower glass transition
temperature than the polymer. This process is referred to as plasticization.
Thus, moisture acts as a diluent in current resins being utilized in high per-
formance structural composites, resulting in a lowering of the Tg. There
are indications (ref. 2) that similar effects occur in epoxy matrix composites.
Data (ref. 2) also indicates that the lowering of the Tg in both neat resins and
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derived composites can be estimated from the Kelley- Bueche plasticization

theory (ref. 3). Thus, absorbed moisture reduces the temperature range

over which matrix dominated composite properties remain stable. From a

practical standpoint, change of failure mode due to plasticization is of pri-

mary concern.

In the present paper, the prediction of moisture content in conjunction
with laboratory characterization is discussed in detail. In addition, data is

presented which shows the effect of absorbed moisture on the flexure

strength of unidirectional Hercules AS/3501-5 graphite/epoxy composites.

The flexure test is an excellent example of absorbed moisture inducing a

change in failure mode.

PREDICTION OF MOISTURE DIFFUSION

Fick's Law

It has been shown (ref. 4) that moisture diffusion in laminated compo-
sites can be predicted by Fick's second law. For diffusion through the thick-
ness of an infinite plate, the diffusion equation is given by

2
m Dz (I)

at az 2

where m is the percent moisture gain per unit thickness, Dz is the diffusivity

through the thickness, t denotes time, and z is the thickness coordinate.

Consider the following boundary and initial conditions for a plate of thickness

h

m(z, 0) = m. constant (2)1

m(O, t) m(h, t) = m I constant (3)

where mi is the initial moisture distribution in the material, and ml is the

surface moisture concentration, which is a function of the relative humidity.
A solution to equation (1) which satisfies the conditions of equations (2) and
(3) can be obtained by classical separation of variables with the result
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m(zt) 1-mi - 4(i 1 -m .)
1 (2n- 1)

n~ 1

(4)

x sin (2nh-)z exp [-(2n- 1)2•tj]

where

Dz 
t

h2

The total weight gain of moisture in the plate is given by

h

M f m dz (6)

0

Integration of equation (4) yields

o• 2

M(t) = MI- 8 Go exp [-(n- 1) )Zt*(1 y-2(M 1 -Mi 1. 2
n=l (2n- 1)

Application to Characterization

Consider an experiment where an initially dry specimen is exposed to
a constant environment (temperature and humidity) for a given period of time
tI. It is then put in a dry environment and the temperature ramped at a con-
stant rate to a given level at time t 2 . A test is then performed on the speci-
men over some period of time. Such a procedure is used during laboratory
characterization of moisture effects on the mechanical behavior of laminates.
It is often desirable to control both the moisture content and distribution
during such a characterization. Equations (4) and (7) can be modified for such
a purpose.

For the interval 0 t_-•t 1tI, equations (4) and (7) can be used directly
with m M 0 and Dz = Dz(Ti), where T 1 denotes the temperature during
this time interval. It should be noted that the diffusivity is a function of tem-
perature. In the interval tl!-•ttt 2 the temperature will be varying with time
and as a result, Dz will vary with time. This can be accounted for by defin-
ing t* in the following manner (ref. 5)
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t

S f Dz (s) ds (8)t* h .I

ti1

Note that in the derivation of equation (8) it is assumed that the temperature
gradient has negligible effect on diffusivity, as the heat diffusivity is several
orders of magnitude greater than moisture diffusivity. For this interval the
initial distribution can be obtained from equation (4), with the result

1 4 1 sin h(n- ljxzm.i( z) = M1 - (2n- 1) h
n=l

(9)

x exp [-(2n- 1) 2jt2 t]

where

t- Dz(T1)tl (10)
I h 2

In addition,

m(0, t) m(h, t) 0 11)

Dz Dz(T) : Dz(t) (12)

If equation (9) is expressed as a Fourier series, then the moisture profile

for this time interval becomes

4 01
m(z,t) - ml 1 (Zn- 1) 1

n=l

(13)
ex LZn i2 2] (Zn- 1) itz

- ex (2L - 1 j 1] sin h

x exp [-(2n-1)2 tA2 f D (s) ds]

t1
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S 8M1 - 1i- exp [-(2n-1)2•2t-•]
M(t) jr - 2n=l (Zn- 1)

t (14)

x exp (2n 1)2n2 D()d

h2 Dzs

For the interval t2 t

m.(z) - 1 - exp -(Zn-1) 2 it 1
Sn=l

(15)

x exp [-(2n-l)2t] Sin(n-1)srz
hh

where

tt

t2, h ff Dz (s) ds (16)

t 1

The boundary conditions are those of equation (11). Since equation (14) is in
the form of a Fourier series, the moisture profile for this time interval
becomes

m(z, t) 4 Jr (2n- i)

n=l

- exp [(Zn- 1)Z2 r 2tj* sin (2n- 1)it z

x exp [(Zn- 1)Z3 (tZ +T

and the total moisture gain is given
8M1 0 1

M(t) 1M
2 n=l(n-1)
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-exp [_ (2n-1)2 2t]} exp [-(2n-l) 2 2(t+ ] (18)

where
_ Dz(T 2 )

t 2 (t- t 2 ) (19)

h

CHANGE IN FAILURE MODES

Filament Dominated Laminates

In most engineering usage of fiber reinforced composites, laminate
stacking geometry is chosen such that stiffness and strength are controlled
by fiber modulus and strength, respectively. Thus, some matrix softening
can be accommodated in such applications without serious consequences. If
considerable matrix softening occurs, however, the ability of the resin to
support the fiber is severely reduced, along with the ability to transfer load
through the matrix to the fibers. The result is a change in failure mode from
filament dominated to matrix dominated. The classical example is that of
unidirectional compression, where a significant loss in matrix stiffness leads
to local instabilities and a reduction in compression strength. Thus, any loss
in resin Tg due to moisture absorption can lead to a reduction in the useful

temperature range of the composite laminate.

Flexure Strength

Unidirectional flexure tests are commonly used for quality control, and
0 degree flex strength is considered to be a filament dominated property. For
state-of-the-art high-performance epoxy resins, 0 degree dry flex strength is
relatively insensitive to temperatures below 300 0 F. With increasing moisture
content, however, measurable strength degradation can occur at temperatures
considerably below 300 0 F. This is illustrated in Table I, where 0 degree flex

strengths are shown for Hercules AS/3501-5 graphite/epoxy composites.
These results were obtained on eight-ply composites subjected to a standard
four-point bend test with a 32:1 span-to-depth ratio. A cursory examination
of these results reveals that a severe loss in 0 degree flex strength occurs at
a temperature as low as 200°F after exposure to equilibrium moisture content
in a 95% relative humidity environment. The T of this material under these

conditions has been shown to be approximately 210OF (ref. 2).
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Under dry conditions the shear strength of the matrix, for temperatures

less than 300 0 F, is high enough to prevent interlaminar shear failure and

assure that the flex strength is governed by fiber breakage. As moisture

induces matrix softening below 3000F, the high temperature flex strength

becomes dominated by interlaminar shear yielding. This conclusion can be
supported by examining failed specimens and noting that the 300OF wet com-

posites did not display fiber breakage as the mode of failure, but were per-
manently deformed near the load noses where the shear stress was largest.

Furthermore, the load deflection curves for these cases produced a classic

example of an elastic-plastic material. For conditions under which brittle
failure was induced, fiber breakage occured between the loading pins where

the interlaminar shear stress vanishes. Thus, the 0 degree flex strength is
another classic example of a change in failure mode induced by matrix

softening.

Interlaminar shear stress-strain behavior relative to the 0 degree flex

test is illustrated in figure 1. These 0 degree shear results were obtained
from a ± 45 degree tensile test as described by Rosen (ref. 6). The entire

stress-strain curve is not shown, but is terminated at the stress level where

the maximum interlaminar shear stress occurs in the 0 degree flex test.
This value can be calculated from classical beam theory with the following

result for quarter-point loading.

aof
r - (20)max S

where r is the maximum value of the interlaminar stress obtained duringmax
the flex test, a. is the flex strength, and S is the span-to-depth ratio of the

test specimen. For the high temperature tests considerable non-linear shear
stress-strain behavior is observed. For the wet tests, the non-linear behav-
ior occurs at very low stress levels.

To further illustrate the change in failure mode, 0 degree flex strength
is plotted on a log scale in figure 2 as a function of temperature for wet and
dry conditions. This plot resembles typical log modulus versus temperature

curves found in classical viscoelastic polymeric materials. Thus, the flex
test may be useful in assessing T for composites or for assessing the useful
temperature range of the materiaf for various moisture contents.
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CONCLUDING REMARKS

It has been shown that a solution to Fick's law can be obtained which is
relavent to laboratory characterization of composite materials containing
moisture. This solution provides a detailed moisture profile in addition to
determining total weight gain due to moisture absorption. Data presented
also indicates that the widely utilized unidirectional flexure test can be a
valuable tool in assessing the useful temperature range of composite laminates
for various moisture contents.
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TABLE I.- UNIDIRECTIONAL FLEX STRENGTH,
AS/3501-5 GRAPHITE/EPOXY

TFMPERATURE af(D R Y) f(WET - 1. 1%) a(WE T - 1.7

RT 259 KSI 265 KSI 252 KSI

2000 F 259 KSI 210 KSI 180 KSI

2500 F 242 KSI 166 KSI 135 KSI

3000 F 233 KSI 125 KSI 90 KSI

* EXPOSED TO EQUILIBRIUM AT 75% RELATIVE HUMIDITY AND

160 0 F, 07o WT. GAIN = 1.10/%.

;* EXPOSED TO EQUILIBRIUM AT 95%/, RELATIVE HUMIDITY AND

160°0 F, % WT. GAIN = 1.7%.
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Figure 1.- Shear stress-strain curves for unidirectional
composites. Wet = 1.1% equilibrium weight gain at
75% relative humidity and 160 0 F.
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Figure 2.- Unidirectional flex strength as a
function of temperature.
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INTERLAYER DELAMINATION IN FIBER REINFORCED

COMPOSITES WITH AND WITHOUT SURFACE DAMAGE

S. S. Wang
Department of Materials Science and Engineering

Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

Fracture problems of interlayer delamination in fiber reinforced com-
posites with and without surface damage are studied in this paper. The
singular hybrid-stress finite element method employing a crack tip super-
element based on a complex variable formulation is used. The applied loads
are either uniform stretching or pure bending as in standard experimental
tensile and interlaminar tests. Combined fracture modes and the corresponding
stress intensity factors are obtained for different ply orientations and
stacking sequences for a graphite/epoxy system. The results also serve to
elucidate the interlaminar stress transfer mechanism for this type of fracture
problem. Using Erdogan-Sih's brittle fracture criterion, the initiation and
direction of growth from the delamination-crack are calculated.
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STRESS INTENSITY AT A CRACK

BETWEEN BONDED DISSIMILAR MATERIALS1

Morris Stern and Chen-Chin Hong
The University of Texas at Austin

INTRODUCTION

The nature of the stress field in front of a crack lying in
the surface between bonded dissimilar materials was first investi-
gated by Williams (ref. 1). He observed that not only do the
stresses grow at a rate inversely proportional to the square root
of distance from the crack tip, they also exhibit an oscillatory
singularity with wave length inversely proportional to the absolute
value of the logrithm of distance from the crack tip. The problem
of calculating stress intensity factors for various special load-
ings and geometries has been treated by other authors, among them
Erdogan (ref. 2 and 3), England (ref. 4), Rice and Sih (ref. 5),
and Erdogan and Gupta (ref. 6). In all cases for which results
are given the region is unbounded and the loads are uniform.

For more general boundary value problems involving imperfect
bonding of dissimilar materials numerical methods must be resorted
to, and both the growth and oscillatory nature of the singularity
can be expected to cause numerical difficulties. In addition, be-
cause the elastic moduli of the materials are generally different,
discontinuities in components of stress and strain develop nat-
urally on the bond. Recently we extended the contour integral
method to problems of this type. It turns out that the nature of
the loading and restraints, even on remote edges, can have a sig-
nificant effect on the stress intensity. In this paper we treat
some example problems to illustrate this.

iThis work was supported in part by a grant from the National
Science Foundation.
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CONTOUR INTEGRAL METHOD

The basic boundary value problem is illustrated in Fig. 1.
Two dissimilar materials are joined along a straight edge with one
or more cracks present. The composite is loaded or restrained on
the remote boundary and the crack faces are free of load. Local
cartesian and polar coordinates are introduced with origin at a
crack tip and the negative x-axis (e = ± R) along the crack edges.
The subscript 1 is arbitrarily assigned to material below the axis
(-Tr < 0 < 0), and the subscript 2 is used for the other material
(0 < 8 < R-). Also introduced is the so-called bimaterial constant

Y i + K12K= ~l+½K(1)
112 + 111 2

where jI, ½2 are the respective shear moduli and K = 3-4v for plane

strain, or K = (3-4%) (l+v) for plane stress, v being Poisson's Ratio.

Notation for complex displacement and stress fields in terms
of components referred to the local polar coordinate system are
introduced as follows:

u = ur + iu

ar = a rr + iT re (2)

Ce = Gee - iTr 8
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Then the displacement and stress fields in the neighborhood of the

crack tip in each material are of the form2

________ei(X-l) 6 i(-X-1) 6
u r [K e - ye

K • 'i(-X-l)6 i(-X+l

+ Kj1 (1ly) r [e - e + remainder

u2 T 21 2 (1+y)X r [K2 ye +

+ 2- 2 (i+Y)r (e i(Xl)0 - e i(]X)e3 + remainder

X-l + i(-l)6) (-l)e+r

r K le i(X-1)6 -yei(-X--)

+ Ky r [rei(- ([- 2 )e1X )] + remainder

(1+y)

-XKr-l yi(-Xl) 6 _ ei(-XI -I rmine

26 K X-1 i(X-1)

•2r •(3)

+ li r -l [ei (--l)e6 - _e i(-7+)] + remainder(l+y)

G r -l ei - ) + -yei - - ) ]

KX X-1 i (-X+I)e( i (-X-i)

( r -1i- i(X-l)6 + i(e l)
•2e = l r Te+

+ (1+y -l[ei-+) _ ei( l I] + remainder

2Except for notational differences these results were also obtained

in references 3, 4 and 5.
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where

+ 1 in y + i1 (C in y) (4)

and K = Ko e is a complex stress intensity factor with the

following "physical" interpretation:

lima0  - im (a -iTxy)j
r÷0 0=0 x÷0- + Yy y=O

Kr = K r-r-e-½ i(sln r + B)
0

hence on the bond immediately in front of the crack tip we have

K
o 0 cos(sln r + B) + remainder

K (5)

Txy = sin(sln r + B) + remainder

Thus K0 governs the amplitude growth rate of both the normal stress

and shear stress while ý determines a nonsignificant phase shift.
The complex crack opening displacement is also governed by the
stress intensity factor:

Au = u2 -+ = 2
=U -U 6=-7 12 (1+y) K

The amplitude of the complex crack opening displacement can be put
in the form

(Il + 12 KI) (" 2 + 1 K 2 ) cosh c7- K / (6)
'u (Ill + 2+ 1 2 + 2 K,/ 1  2 o

A contour integral representation for the stress intensity
factor is obtained from the reciprocal work identity by introduc-
ing a suitable artificial singular elastic state. Briefly,
we observe that for arbitrary values of the complex constant C,
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a singular elastic state corresponding to zero body force and with
no traction on the lines 0 = + 7 is defined in the bimaterial
region by

2 11r =ei(+1) ei(-1)e

2lU = CXyrX [e( - e]

+ Cr-K[ li(--1) ei(X-l)0i

*+ Cr-X[2 i(--) e _- (X+2)e ]

+ C~r [ye - (I+2)e ]

(7)
* = yr -X-l [ei(X-I)0 (X+ 2 )ei(X+l)0]

Gr2 C~ X

+ Clr 7 e1 - ye

a = x2r--l [e i(x+l) e i(-Il)e]

- Cr-Xl- [ei(-X-l) 0 + yei(X-1)

a = yx 2r- -l[e i(+l) e i(X-1)0e82

- CTr- [ye + e

This elastic state has the further property that on the contour
C (a circle of radius c centered on the origin) we calculate a

finite contribution from the reciprocal work as the contour
shrinks to a point:

703



Itip limf (u*.t - u-t*)ds

C

limr -* _
,+0- ! Re [u ar - UYr]ds (8)

- r ( ýi + 112 KI ) Re Ru
Y 1A1 ±' v 2 K 1  eC

Upon noting that the reciprocal work vanishes on the complete
contour C UC±UC C- indicated in Fig. 1 as a consequence of Betti's

0 cno
theorem, and on the crack edges C+UC- since the tractions in any
case vanish there, we obtain the representation

Re K (u-t - u *t)ds (9)Im ....
SC

0

where for Re K we choose C = - in Eq. (7) in calcu-
and *l +TTi 11 2 K 1)P

lating and u , whereas for Im K we take C = -i 7(' i + ±2<i) "

The values of u and t on the contour C are obtained numerically.

For the results given in this paper we used code TEXGAP (ref. 7)
which performs isotropic linearly elastic plane analyses using
conventional quadratic displacement triangles and isoparametric
quadrilaterals.

NUMERICAL RESULTS

The four cases treated involve a finite bimaterial strip
loaded in tension and are sketched in Fig. 2. From symmetry con-
siderations we need to consider only the shaded region, and in
Fig. 3 we show a typical grid (symmetrically defined in each half
region) for the finite element analyses. Half the contour used
for evaluation of the stress intensity factors is shown in dashed
line in Fig. 3. We note that the four distinct problems con-
sidered are obtained from the same grid and boundary conditions
on the edges parallel to the crack, but with the following boun-
dary conditions on the vertical edges:
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i) Central crack - free edges: AB restrained, CD un-
restrained

ii) Central crack - fixed edges: AB and CD restrained
iii) Single edge crack: AB and CD unrestrained

iv) Double edge crack: AB unrestrained, CD restrained.

Two sets of results are plotted in Fig. 4 and 5. The first
shows the effect of different crack sizes in a given strip for
each case; the second shows the effect of changing the relative
dimensions of the strip for a fixed crack length to width ratio.
In each case the results are normalized using the stress intensity
factor for an infinite region loaded uniformly in tension normal
to the crack and restrained from motion parallel to the crack on
the remote boundary. This case is equivalent to an infinite bi-
material plate with vanishing stresses at infinity and a uniformly
pressurized crack on the bond, for which analytical results are
given in references (4) and (5):

2
K / + 4 6 a0 2 (10)

It is interesting to note that for real materials the bimaterial
constant y is restricted to values between 1 and 3;consequently,
the maximum variation in K that can be achieved by varying the

properties of the two materials (this enters only through the
parameter £) is less than six percent, thus the isotropic case
furnishes an excellent (lower bound) estimate for K . The data

plotted in Fig. 4 and 5 are based on material properties

K1  = 1.6, K2 = 1.8, 'P2 /Pi = 17

which yields the value y = 1.5.
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STRESS CONCENTRATION FACTORS AROUND A CIRCULAR

HOLE IN LAMINATED COMPOSITES

C. E. S. Ueng
Georgia Institute of Technology

SUMMARY

This paper deals with the determination of stress concentration factors
around a circular hole in a composite laminate. The specific case investigated

is a four layer (-450/450/450/-450) graphite epoxy laminate. The factors are
determined experimentally by means of electrical resistance strain gages, and
analytically by using a hybrid finite-element analysis.

INTRODUCTION

In this study, the laminar stress concentrations around a circular hole in
an angle-ply composite laminate are determined for the axial tension loading

case. Of particular interest is the largest value of ae present at the peri-
meter of the hole. This study proposes to determine these stresses experimen-
tally and analytically. For the experimental analysis, electrical resistance
strain gages are used. The analytic procedure uses the finite-element method

of a two-dimensional hybrid model with an assumed stress field within the ele-
ment and assumed displacements at the element interfaces.

The stress concentration factors around a circular hole in an infinite,
isotropic sheet have been determined analytically through various approaches
and confirmed experimentally. For an infinite plate, the stress components
around the hole are (ref. 1)

o + bb2b cos 20 (la)

r 2 -2/22\ 2/ (Ia)
r r r

o / 12,) ( 3b4 \
a 2 (l- I + - cos 20 (lb)

0 22) 24
r r

T - --£2-(1 + -3b-I sin 20 (Ic)re 22
r r

where b is the radius of the hole and ao is the applied load. The ratio of

ae/uo along the hole is plotted as shown in figure 1. Obviously, the.maximum
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of ae is three times co, and occurs at e = + 900, i.e., at the ends of the
diameter perpendicular to the direction of tension.

Due to the increasing use of advanced laminated composites in flight
structures and other potential applications, the stress concentration around a
cutout in a fiber-reinforced laminate has been the subject of research by
several investigators in recent years. Daniel and Rowland (ref. 2) used an
experimental approach - the Moire technique, and determined the strain (stress)
concentration around a circular hole in a tension loaded anisotropic plate.
Hyman et al. (ref. 3) carried some exploratory tests on the same problem.
Franklin (ref. 4) also investigated the hole stress concentrations in fila-
mentary structures. By using linear elastic plane stress conditions with the
help of finite-element method, Rybicki and Hooper (ref. 5) studied and obtained
results for boron-epoxy lamina. In a reviewing article (ref. 6), Grimes and
Greimann gave an up-to-date overall picture about the stress concentration
around a circular hole in a fiber-reinforced composite. Several additional
references are cited in this article.

In an experimental study of orthotropic composite materials, Kulkarni,
Rosen and Zweben (ref. 7) have found that the stress concentration factors are
a function of the hole diameter, up to a diameter of 2.54 cm (I in.). They
observed that the actual number of filaments severed by the hole determined
the strength of the specimen.

The present problem of a general angle-ply composite laminate with a
circular hole is further complicated by the interaction of the individual
layers.

EXPERIMENTAL WORK

Equipment

The orientation of the strain gages around the holes is shown for each of
the four specimens in figure 2. The gages were mounted adjacent to the hole
and were 4.8 mm (3/16 in.) wide, 120 ohm standard foil gages. The specimens
were mounted in clamp grips and attached to a 90,000 N (20,000 lb.) capacity
load cell through the use of swivel bearings. The gages were wired into the
digital strain indicator with the indicator providing three arms of the Wheat-
stone bridge required in the electrical circuit. The load cell was wired into
an electrical transducer and calibrated to measure the axial tension applied to
the specimens.

The strain gages were applied to the specimens using Eastman 910 adhesive,
following standard preparation of the surfaces.

Test Specimen Data

The four testing specimens were provided by Lockheed-Georgia Aircraft
Company. Their assistance is greatly appreciated.
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Material: graphite epoxy (Narmco 5209/T300)

65% graphite fiber, 35% epoxy matrix

Four layer angle-ply (-45°/450/450-450)

Grip tabs of fiberglass epoxy molded integrally with specimens.

For a unidirectional single layer the macroscopic properties are

E00 = 137900 - 144795 MN/m2 (20 - 21(10)6 psi)

E 9 0 0 = 8274 , 9653 MN/m2 (1.2 - 1.4(10)6 psi)

G = 4.55 MN/m2 (0.66(10)6 psi)

Specimen No. 1 2 3 4

Width 10.16 cm 10.16 cm 10.16 cm 10.16 cm
(4 in) (4 in) (4 in) (4 in)

Hole diameter 2.5522 cm 2.5527 cm 2.5527 cm 2.5530 cm
(1.0048 in) (1.0050 in) (1.0050 in) (l.0051in)

The thickness of the four specimens around the hole was also carefully
measured. Data were taken at eight stations, the end points of a horizontal
diameter, a vertical diameter, and two more diameters which bisect the hori-
zontal and vertical directions. The results are shown in table 1.

It can therefore be concluded that the assumed thickness 0.6350 mm
(0.0250 in) is quite reasonable.

Testing Procedure

First, the testing specimen was mounted in the upper grips of the loading
device. The loading indicator and the strain indicator were zeroed and cali-
brated. Then the other end of the specimen was mounted in the lower grips of
the loading device. After the specimen was loaded up to the 100% load (2224 N
or 500 lb), the load was then released. This was repeated six times in order
to eliminate the strain gage error due to strain hardening. An increment of
20% of the maximum load was used each time, and the corresponding strain read-
ing was then taken. The same steps were followed for the other three specimens.

Testing Results

The data obtained from the strain gage testing was the values for ce at
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four different locations around the hole. These values are given in table 2,
and displayed graphically in figure 3.

The strain gage results can be easily repeated and showed very good
stability with repeated loadings. The values obtained at 444.8 N (100 lb) of
load are not as reliable as the incremental changes in strain for each incre-
mental change in load. Normally)the tightening of the end clamps on the speci-
mens resulted in an initial strain of some significance.

The assistance of Mr. W. H. Taylor in carrying out the testing program is
acknowledged here.

Stresses

Based upon the available mechanical properties as previously mentioned,
the stresses were calculated from the stress-strain relation and the trans-
formation relations. The tangential stress component ge obtained from the re-
corded strains are plotted in figure 4.

FINITE ELEMENT ANALYSIS

The finite-element method used here is a two-dimensional hybrid approach.
The variational principle used is that of minimum complementary energy with
the interelement stress continuity enforced by means of the Lagrange multipliers.
The elements used are shown in figure 5.

The formulation of the problem at this stage follows a rather standard
fashion as this method is typically applied to many stress analysis problems.

The stress function polynomial used in the computer program is

S= ax3 + bx2y + cxy2 ± dy3 (2)

which results in the following stresses:

S= 2 cx + 6 dy
xx

S= 6 ax + 2 by (3)YY

T = -2 bx - 2 cyxy

It can be easily verified that these stress components automatically satisfy
the equilibrium equations in the absence of body forces.
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Arranged in matrix form, equations (3) become

[a] = [Q] [a] (4)

where

r -a
0 0 2x 6y

b
[Q] = 6x 2y 0 0 and [a] =

c
0 -2x -2y 0

0 d

By Cauchy's relation T. = a..n., one has

T Fn 0Yx

x x y (5)
T 0 n n •YY

y v x_STJVxy

or

[T] = [M] [a] (6)

where n x 0o n
[M] = [ Q] (7)

ny nx

Following a somewhat standard fashion, the circumferential stress around
the hole is obtained and plotted also in figure 4 for the comparison purpose.

DISCUSSION OF RESULTS

The results presented in this paper represent an attempt to understand
and predict the stress concentration around a circular hole in an angle-ply
laminate. As shown in figure 4, the circumferential stressesbased upon the
finite-element method and the one computed from the recorded strain data, are
plotted together for comparison purpose. These two curves cross each other at
a few places, but the discrepancy at some places is up to 35%. This degree of
deviation is not hoped for, but it is tolerable. Similar experience indicates
that such a difference is by all means possible.

The stress concentration factor at b/r = I and e = + 900 is about 5.8
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which is considerably higher than the classical factor 3 for an infinite,
isotropic plate. Therefore, special attention must be paid for the local
stress concentration around such a circular hole. One possible reason for
having such a high stress concentration factor is that a number of fibers were
cut at the location of the hole. This weakens the ability of the fiber ele-
ments for transmitting the stresses. From an intuitive point of view, if
the location of the hole is known in advance, then rerouting the fibers
around the hole may cut down the high stress concentration factor.
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TABLE I.- TEST SPECIMEN DATA

Thickness, mm (in.) for specimen -
Station 1 2 3 4

00 0.5842 0.6477 0.6223 0.5969
(0.0230) (0.0255) (0.0245) (0.0235)

450 0.5969 0.6477 0.6350 0.5842
(0.0235) (0.0255) (0.0250) (0.0230)

900 0.6477 0.6350 0.6350 0.5842
(0.0255) (0.0250) (0.0250) (0.0230)

1350 0.6731 0.6604 0.6096 0.5842
(0.0265) (0.0260) (0.0240) (0.0230)

1800 0.6477 0.6731 0.6350 0.5969
(0.0255) (0.0265) (0.0250) (0.0235)

_135° 0.6223 0.6731 0.6350 0.5969
(0.0245) (0.0265) (0.0250) (0.0235)

-90° 0.5969 0.6350 0.6477 0.5969
(0.0235) (0.0250) (0.0255) (0.0235)

-450 0.5842 0.6477 0.6223 0.6223
(0.0230) (0.0255) (0.0245) (0.0245)

TABLE 2.- TEST RESULTS

Applied Remote Strain recorded, mm/mm or in./in., for specimen -
load, stress,

N (ib) kN/m 2 (ksi) 1 2 3 4

448.8 (100) 6895 (1) 1520 x 106 -990 x 106 390 x 106 108 x 106

889.6 (200) 13790 (2) 2610 x 106 -1710 x 106 600 x 106 250 x 106

1334.4 (300) 20685 (3) 3730 x 106 -2690 x 106 830 x 106 398 x 106

1779.2 (400) 27580 (4) 4920 x 106 -3540 x 10 6  1020 x 106 551 x 106

2224 (500) 34475 (4) 6170 x 106 -4600 x 106 1230 x 106 710 x 106
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Figure 5.- Element assignment.
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TRANSFER MATRIX APPROACH TO

LAYERED SYSTEMS WITH AXIAL SYMMETRY

Leon Y. Bahar

Department of Mechanical Engineering and Mechanics

Drexel University

Philadelphia, Pennsylvania 19104

SUMMARY

The stress and displacement distribution in a layered medium is
found by means of transfer matrices. The surface loading exhibits axial
symmetry, and each layer is of infinite extent in the horizontal direction,
of constant depth, and is considered to be linearly elastic, homogeneous,

and isotropic. The method developed has the built-in advantage of enforc-
ing interface continuity conditions automatically. Its application to
layered composites shows the flexibility with which it predicts the local
as well as the global response of the medium.

INTRODUCTION

Recently, this writer developed a transfer matrix approach to various
problems in mechanics by combining the method of initial functions due to
Vlasov (ref. 1), with the integral transform method developed by Sneddon
(ref. 2).

The method employed by this writer consists in applying the state
space approach, which has been used extensively to analyze linear systems
in various areas of systems engineering, such as modern control theory
(ref. 3), to the field of elastomechanics.

The topics so far analyzed through this approach cover two-dimensional
elastostatics (ref. 4), one-dimensional elastodynamics (ref. 5), applica-
tion to a typical elasticity problem (ref. 6), examination of the basic
foundation of the theory (ref. 7), application to numerical integration of
equations of motion to predict dynamic response (ref. 8), heat conduction
(ref. 9), boundary value problems (ref. 10) and earthquake engineering with
emphasis on soil-structure interaction (ref. 11). Additional references
pertaining to each topic considered will be found in the references cited
above and will not be repeated here.
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This paper extends the work described in (ref. 4) which was restricted
to a plane stress (or plane strain) problem, to a three-dimensional one with
axially symmetric loading. The motivation for considering the present
approach is to develop a flexible method for the analysis of layered media
subjected for instance to concentrated loads, ranging from classical problems
in soil mechanics, to the prediction of impulsive response of laminated com-
posites. In the latter case inertial effects must be included.

The main advantage of the method is due to the fact that continuity
of stresses and displacements at interfaces is automatically satisfied.
Therefore, upon determination of the missing initial displacements from
boundary conditions, the field quantities can be determined upon multipli-
cation of the initial state vector by the chain of layer transfer matrices
by the field matrix of the layer of interest. A Hankel inversion gives the
actual field quantities.

In contrast, the classical formulation requires the construction of a
transformed Airy stress function that contains four arbitrary parameters
per layer, thus producing a total of 4n equations in 4n unknowns for a
medium of n layers. These are determined by enforcing the continuity of
stresses and displacements across each interface, which yields 4(n-l) con-
ditions to which the four boundary conditions are added.

DERIVATION OF THE TRANSFER MATRIX

The equations governing the state of stress of an axially symmetric,
homogeneous, isotropic, linearly elastic solid, are given by the equi-
librium equations

r = rz0+ 0 (la)
Dr ýz r

DT aU Trz +z + rz (lb)Dr z rz

in the absence of body forces and inertial effects. These equations must
be adjoined by the constitutive relations

y = (+ 2 1j) yr + A! + Dz (2a)

'Du
+ 2+- + (X + 2,)u (2b)

0 "er 3zr

"z DU- + ) + (A + 2p) •- (2c)
z ',Dr r D

T ( ýu + w (d

rz D-z Dr•
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The four stresses given by equations (2) are functions of the partial
derivatives of two displacements only' it follows that two of these stresses
can be eliminated.

For reasons of convenience, oe and Gr are chosen for this purpose.
Upon substitution of equations (2a) and (2b) into equation (la), the latter
can be rewritten as
(X + 20) -u + _I ýu -u + _rz + X 2w =0 (3)

_r2 r rr 2 ýz _zr

Differentiation of equation (2c) with respect to r yields

z _ u +1 u +u + (X + 2p) •z rLr Dr2 r r r2 (4)

Elimination of the mixed derivative between equations (3) and (4)
results in the relation

ýGz ý2u + 1 ýu u r+ U z
XT + 41 (X + 1) ++ (Xrz _ 0 (5)

@r 2 r 3r 2r3

Consider a semi-infinite elastic medium which extends to infinity in
the r-direction as shown in figure 1. The medium is loaded by an axially
symmetric load as shown. Under the circumstances, taking Hankel Transforms
of order one of equations (5) and (2d), and of order zero of equations (2c)
and (lb),results in the system of equations cast in matrix form as follows:

Pu0 0 1 P

d 11w0  -XC/(X+2p) 0 p//(X+2p) 0 Pw(= (6)
dz -S0 0 0 0

T 4_4(X+i) 2 /(X+2 1 ) 0 Xý/(X+2p) 0 1T

where the subscripts indicate the order of the Hankel transform. Equation
(6) can be integrated by considering the column vector of transformed
stresses and displacements as the state vector X(E,z), and rewriting it as

dz

As shown in (ref. 4), equation (7) can be integrated to yield

{X(E,z)} = exp[zA(E)] {X(0)} (8)

where the matrix exponential has to be evaluated explicitly. The char-
acteristic roots of the determinant associated with the matrix A(ý) are the
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double roots + ý, identical to the result obtained in ref. 4 . Therefore,
the results are analogous to those obtained in that paper, in which it is
shown that exp(zA) = a0 1 + a1A + a 2 A2 + a3A3 (9)
where

a= cosh Cz - (Ez/2) sinh Cz

* = [3 sinh Cz - Ez cosh ýz]/2C (10)

a 2 = [z sinh Cz]/2C

* = [Cz cosh ýz - sinh Ez]/2C

Upon substitution of these values into equation (9), the transfer
matrix is obtained, and equation (8) gives, in turns the state vector which
consists of the transformed stresses and displacements at an arbitrary depth
in the field. The details pertaining to the evaluation of the transfer
matrix are given in the Appendix. The results can be summarized in matrix
form as

Pu i(Ez)' iLl 1  L1 2  L1 3  L14 PUl(CIO)

Pw0 (C,z) L2 1  L2 2  L2 3  L2 4  j1w 0 (C,0)

a0 (E,z) L3 1  L3 2  L3 3  L3 4  a0(E,0)

T 1 (C,z) Ln41 L42 L43 L44 1(E,0)

where the influence functions mapping the initial field quantities into
those at an arbitrary depth in the field are given by

LI1 = L = cosh zE + [(X+p)/(A+2p)]zC sinh zC

L12 = -L34 = [1' sinh zE + (X+p)zE cosh zE]/(X+2p)

L13 -L24 = [(X+•)/(X+2ji)]z sinh zE

L14 = [i/2(X+2p)ý][(X+31j) sinh zC + (X+lj)zC cosh zC]

L21 = -L43 = [l/(X+2p)][p sinh zC - (X+p)zC cosh z]( (12)

L22 = L = cosh zE - [(X+p)/(X+2p)]zC sinh zC

L23 = [l/2(X+2p )E][(A+31 i) sinh zC - (X+0)zE cosh z•]

L31 = -L42 = -2z42 sinh zE

L32 = [2(X+±i)E/(X+2P)][sinh z4 - z4 cosh z4]

L41 = [2(X+p)ý/(X+2p)][sinh z4 + z4 cosh z4]
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The actual physical quantities are then recovered through the inverse
Hankel transform.

APPLICATION TO LAYERED SYSTEM

Consider a layered medium with perfect bonding along all interfaces
as shown in figure 2. This implies the continuity of transformed stresses
and displacements across each interface. In order to enforce this condi-
tion, the first two entries of the state vector which appear in equation
(11) are divided by the shear modulus, to produce a new state vector con-
sisting of transformed stresses and displacements. The elements of the new
matrix G become G1 3 = L1 3 /1-; G1 4 = L1 4 /P; G2 3 = L2 3 /P; G2 4 = L 2 4 /i;
G31 = pL 3 1 ; G3 2 = pL 3 2 ; G4 1 = pL 4 1 ; and G42 = pL4 2. The remaining elements

of the G matrix are identical to the corresponding elements of the L matrix.

The modified equation (11) can now be written in contracted form as

{Y(ý,z)} = [G(X,p,z,ý)] {Y(ý,O)} (13)

Applying equation (13) to each interface in turn, in the sequence shown in
figure 2, leads to

{Y(ý,h n)} = [G(A ,ni n,h ,hn ... G(Xl,'l1 ,h 1 ,o)] {Y(CO)} (14)

in which the missing initial conditions are determined from boundary con-
ditions. Equation (14) then describes the overall response of the layered
system.

Local information consisting of state vectors at interfaces can now be
obtained by terminating the matrix multiplication indicated by equation (14)
at the appropriate interface. These relations are shown by the block
diagrams shown in figures 3 and 4.

The state vector in any arbitrary layer m can now be found by the
relation

m-1

{Y(C,z)} = [G(Xm5,mz,C) H G(Xi, i,h, )h]V{Y(CO)} (15)
1=1

in which the z coordinate is the local depth within the layer m, ranging
from zero to h . The actual stresses and displacements are given by the
inverse Hankelm transformation of the state vector.

CONCLUDING REMARKS

In this paper, a transfer matrix method to determine the response of
a layered medium subjected to an axially symmetric loading has been
presented.

The matrix formulation shows that the need for matching interface
conditions explicitly is avoided by imposing the continuity of the state
vector across each interface. This is accomplished through the continued
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multiplication of layer transfer matrices. Therefore, the size of the trans-

fer matrix remains four by four, and is independent of the number of layers

contained in the medium. This is the main conceptual as well as computa-

tional advantage of the proposed method.

APPENDIX

The transfer matrix is given by the expression exp(zA) = a0 1 + aIA +

a2A + a3A3, in which the matrices A,A2, and A are given by

0o 0

-XoX+2P) 0 p/ (X+2 p) 0
A 0 0 0 -C

(+vi)E 2/(X+2p) 0 XE/(X+2p) 0

(3A+4p)C 2  0 0+1) 0

(X+2p)A 2  3 0

-4(X+p) 0 0

0 4 (X+j) C3 0 (3x+4)C 2

0 (3X+4ij) 3  0 (2X+3p)C 2

-(3X+21) 3 0 4 2 0

0 -4 (+0) C 0 -(+4)

8(X+p) 4 0 (3W+2)E 3 0

and the coefficients a 0 ,ala 2, and a3 are given by the set of

relations (10). The elements of the matrix exponential are given

explicitly by the expressions (12).
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APPLIED GROUP THEORY

APPLICATIONS IN THE ENGINEERING (PHYSICAL, CHEMICAL, AND

MEDICAL), BIOLOGICAL, SOCIAL, AND BEHAVIORAL SCIENCES

AND IN THE FINE ARTS

S.F. Borg
Stevens Institute of Technology

SUMMARY

A generalized "applied group theory" is developed and it is shown that
phenomena from a number of diverse disciplines may be included under the um-
brella of a single theoretical formulation based upon the concept of a "group"
consistent with the usual definition of this term.

INTRODUCTION

The essence of the "group" concept as used herein is contained in the
three terms, element, transformation and invariance, and it may be shown that
they are included in the various: analyses discussed in this paper. More for-
mally, the mathematical definition of a group generally includes the "inverse"
operation (however defined) and also an "identity" operation (also variously
though consistently defined). These may be brought into the discussion of
this report without difficulty, as will be shown, although the main emphasis
will be placed upon the element, transformation and invariance properties of
the groups being considered.

It must be noted at the outset that the yarious terms, quantities and
operations will have different forms for the different disciplines considered.
In some cases they take a mathematical form; in others they appear as curves,
or as sounds or as visual entities. However, despite these differences, it
will be shown that the requirements of the "group" representation will be
satisfied in each case and in this sense all of the disciplines discussed fall
within the overall province of the group concept.

The following manner of presentation will be utilized. In the next sec-
tion a Table will be presented in which the entire theory will be summarized.
All of the group requirements will be listed for the different disciplines
considered in this paper. Others may be included, without difficulty, if
desired.

After this an example from each discipline will be discussed in greater
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detail.

THE GROUPS

A concise, detailed general classification scheme for the underlying
theory is contained in Table 1.

Note especially how all of the formal requirements of group representa-
tion are satisfied - although these vary from group to group.

In particular two distinct typical types of group elements are shown: (1)
tensor or (2) events. There appears to be a connection between these seemingly
separate group types in that many "event" groups may, in fact, be "tensors".
A discussion of this point in connection with "Behavior" is presented later
in the paper and current continuing analyses indicate that this duality may
be a general property of many event phenomena.

The transformation corresponding to the tensors is a rotation of axes.
The transformation corresponding to an event is an alteration or change of the
phenomenon caused by a change in the particular activity variable involved in
the phenomenon. The invariants (which imply conservation of the structure of
the element during the transformation) are the tensor invariants for tensor and
the single equation or curve or other phenomenon representing events. All of the
above will be explained in greater detail in the next section.

DISCUSSION OF TYPICAL GROUPS IN THE VARIOUS DISCIPLINES

In this section, one typical group from each of the disciplines will be
described in more detail than given in Table 1. The references cover the
subject in even greater detail.

Engineering-Physics Groups

A typical group element of many engineering-physical problems is the
tensor - zero, first and second order (ref. 1). Zero order tensors are
scalars, first order tensors are vectors and second order tensors are usually
called "tensors".

Some typical familiar examples of tensors are the stress tensor and the
inertia tensor. In three dimensional x-y-z space these may be shown in a
3x3 matric form, with each term of the matrix representing either a stress
component or a moment of inertia with respect to x-y-z axes.

These tensors may be transformed by rotating the x-y-z axes arbitrarily
about the origin of the axial system. If this is done, then it can be shown
there are three invariants, that is, quantities whose values are not changed
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by this rotation. In addition, the tensor itself is an invariant since it
can be expressed without regard to axial orientation. Furthermore, the inverse
operation and the identity (unit) tensor may be defined and we have, therefore,
all second order tensors as elements of the group.

In an analogous manner, we may discuss a particular physical event (ref.
2) - an infinite straight-sided wedge impacting with constant velocity on an
infinite ocean, with time t=O the instant the point of the wedge touches the
surface. At any time t>O, the wedge and water surface will be at particular
locations, and each of these will be different for different times. The
representation of the wedge and ocean, at any time t=t, corresponds to the
element of the group. If, into this phenomenon, we introduce a change of
coordinates, • =_x , n = y , then the entire phenomenon, for all t>O, may be

T F
shown on a single map (the invariant) in the E,n plane. The time, t, is the
transformation coordinate, since for each different value of t the event
transforms to new wedge and water positions.

The fundamental behavior in the above group is the collapsing of multi-
curve data (the elements) by a suitable change in coordinates to a single
curve (the invariant) valid for all the separate elements for all values of
the transformation coordinate, t. This concept is the basis for many of the
group representations considered in the present paper.

We may define as a group, a set of objects, quantities, happenings or
other items which, by means of a mathematical relation is transformed into a
single event, this being the invariant representation of the separate items or
phenomena. The separate items are called the elements of the group. The
variable which transforms or alters the event is called the activity variable
and the single equation or visual representation of the event is called the
invariant of the group.

The identity relation for these phenomena is either

1) unity, a multiplier of the mathematical equation,

or

2) a transparent sheet placed over the curve such that the curve
shows through unchanged.

The inverse relation for these phenomena is either

1) the negative equation, which when added to the original
equation gives zero,

or

2) an obliterating cover sheet which annihilates the given
curve, resulting in a blank sheet.
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Chemical Groups

In reference 3 an experimental study is reported of the sensitivity of
the DNA-RNA hybrid obtained from the CSCI density gradient to ribonuclease A
and to fraction A (the transformation variables). Six different curves
(elements) were drawn corresponding to six different sets of transformation
variables.

As shown in reference 4 all six curves can be collapsed to a single
curve (and mathematical equation), the invariant, in terms of a suitable
change of variables. The details are presented in the reference.

The unity and inverse statements are as in the engineering-physical
groups, case b.

Biological-Medical Groups

Orentreich and Selmanowitz, (ref. 5) discuss results of experiments
dealing with healing of wounds in dogs and men. Their report shows curves of
healing of originally 40 sq cm wounds on men of 20, 30 and 40 years indicating
wound healing in relation to age (the activity variable).

In reference 3 it is shown that all three curves (the elements) can be
collapsed into a single equation or curve (the invariant) by means of a suit-
able change of coordinates. The details are given in reference 3. The
inverse and identity statements are equivalent to those of case b, engineering-
physical groups.

Social Groups

A social application occurs in connection with a study reported by
Sherman (ref. 6), dealing with total food intake of children from birth to age
13-15. His results are presented in a chart showing the food allowances (in
calories) for children of about average weight for their age. The data is
given separately for girls and for boys (the activity variables), these being
the group elements. By means of a suitable change of variables (as shown in
ref. 3) it is possible to collapse both sets of data to a single mathematical
equation and curve - the invariant. The identity and inverse statements are
again as in case b, engineering-physical groups.

Behavior Groups

Just as in the case of engineering-physical applications, in the area of
behavior there appear to be two different types of group representation - the
"tensoral" and the "event" forms.

As an example of the "tensoral" behavior group, the author (in an as yet
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unpublished report) developed a theory in which it was hypothesized that
certain variables related to behavior may be interpreted as tensors, satis-
fying the same transformation and other relations that engineering-physical
tensors satisfy.

As a check against the hypothesis experimental data presented in a
report (ref. 7) was used, dealing with a number of subjects who imagined
happy, sad and angry situations. Different patterns of facial muscle activity
were produced (the elements) and these were measured by electromyography.
The facial expressions were recorded for depressed and for non-depressed
subjects and, suitably calibrated, were presented in bar graph form. The
subjects were tested on the Zung Self Rating Depression Scale and scored
accordingly. These scores corresponded to the transformation variable.
Complete details are given in the unpublished report.

It was shown that quantities satisfying the tensor transformations could
be established for this one test, at least. A fair check on the hypothesis
was obtained and, subject to further verification, it seems possible that many
of the phenomena in the field of behavior may be treated utilizing tensor
theory. If this is in fact true, it will permit one to predict by extra-
polation various new relations in behavior theory which themselves may be
capable of experimental verification. Also by modelling suitable mathematical
tensoral equations one may be able to correlate measured behavior quantities
with fundamental measurable central nervous system responses.

A typical "event" type of behavior group occurred (ref. 8) in an experi-
mental study of the swimming ability of new-born rats treated with hormones,
the activity variable. Three different groups of rats were studied and three
separate curves were obtained. As shown, (ref. 3) it is possible, by means of
a suitable change of coordinates, to collapse all three curves, the elements,
to a single curve, the invariant. The identity and inverse statements are
similar to the ones shown for case b, engineering-physical groups.

Music Groups

Several different types of music groups may occur. A particular arrange-
ment of notes (as for example Ravel's "Bolero" or the Sch"nberg "twelve tone
music") is a typical element. A discussion of the entire range of music
composition, as it relates to "groups" including such factors as pitch,
repetition, sequential treatment, counterpoint, loudness, etc., is clearly
beyond the limits of this paper. One may, however, consider Ravel's Bolero as
an example. In this composition we have the repetition of a single theme (the
element), representable by means of a musical equation (the notes), being
transformed while being performed by means of a continuing gradual crescendo
into a composition (the invariant) all shown as a symbolic mathematical equa-
tion. It is also possible to represent musical forms in matrix equations.
The identity and inverse statements may be taken as shown in Table 1. Refer-
ence 9 lists a number of additional studies in this area.
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Art-Architectural Groups

In the art-architectural field one may think of piastre band treatments
as being typical of group phenomena. In these cases one may have a series of
"figures" (gargoyles or Saints or Kings or windows for example) in a "band"
going along one side of the building, or completely around the building.
These may be identical (as in the case of windows and possibly the human or
other figures) or they may vary from one to the other as in the case of human
and gargoyle figures.

It is possible to reduce these band figures, the elements, to a single
mathematical equation or to collapse the different figures to a single visual
quantity, as follows:

For, say, the identical windows, we have

(window)x(function of spacing) = n (identical windows)

For, say, the figures, we have (with a suitable definition of the
summation process)

)~fig~ (face)n (clothes)nigureýxx (clothes."" = n(identical figures)
0 0

in which all figures are transformed to an identical figure by means of the
alterations noted. From these equations the invariant - identical window or
identical figure - may be determined.

A somewhat different approach is presented in reference 9.

Poetry Groups

In the case of poetry (reference 10 for example) one deals with terms such
as metre, rhyme, image, texture, triolet, stanza, etc. It is possible to
indicate rhyming schemes by means of letters. As a typical example, the
rondeau which may consist of ten lines has a rhyming scheme as follows:

abbaabRabbaR

In this, R, the refrain, is frequently simply a tail and may be the first word
of the opening stanza.

The above scheme may be put in a rather more symmetrical matrix form
(symmetry is desirable in some theories of composition),
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I
(Caba) (ab a

bR
1=rondeau

*b\
aR I

in which the usual rules of matrix.multiplication are used and "rondeau" is
the invariant. One may, conceivably, invent new poetic forms by performing
various matrix operations - an "inverse rondeau", for example. A much more
elaborate treatment of this topic is presented in reference 9 with particular
emphasis on its application to Russian literature.

CONCLUDING REMARKS

It was shown that the general mathematical definition of "group" may be
applied to phenomena occurring in many different disciplines. The basic terms
of the theory - element, invariant, identity, transformation and inverse -
all have counterparts in the different fields considered, subject to suitable
alterations as required, for example, with. visual or tonal or other charac-
teristic phenomena.

In some of the disciplines discussed, by using the group concept and
developing the group invariant, new relations are obtained which permit one
to predict new engineering, biological, etc. phenomena that are capable of
experimental verification.

Finally, it is conceivable that some of the general theorems and prop-
erties of "mathematical group theory" may - by suitable modification - be
applicable to the different disciplines considered, thereby permitting one to
obtain new fundamental insights and knowledge in these fields.
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RESPONSE OF LINEAR DYNAMIC SYSTEMS

WITH RANDOM COEFFICIENTS

John Dickerson
University of South Carolina

INTRODUCTION

Numerous models of physical systems contain parameters whose values are
not known exactly. This paper attempts to address some of the physical and
mathematical complexities arrising in the prediction of. the statistical be-
havior of such systems. Although the discussions in the paper are far from

providing a satisfactory solution to such problems, they perhaps, by utiliza-
tion of simple examples, will create a greater awareness of the statistical

effect of random parameters.

PROBLEM FORMULATION

Consider the problem of determining the statistical properties of the re-

sponse of a finite dimensional linear dynamical system with random coefficients

(constant with respect to time) and subjected to stochastic forces. Mathe-

matically the problem is represented by the following equation:

dx(t) - Ax(t) + f(t) O<t

dt

x(o) x

where x(t), f(t), and x are n-dimensional random vectors, A is an nxn random

matrix. The problem is to determine statistical properties (mean value,
variance, correlation function, spectral density, distribution, etc.) of x(t)
knowing the statistical properties of x , f(t), and A.

0

EXISTENCE OF SOLUTION

If the derivative in equation (1) is interpreted in the almost sure sense

then existence and uniqueness of a solution follows from appropriate results
in Rn and if f(t) is almost surely continuous then a solution in this sense

would exist and be given by:
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At fteAt)
x(t) = e x + f( eA(t) f (-)dT (2)

0 0

However since the discussions in this paper will be concerned with second
moments of the solution, it would seem appropriate to require the derivative

in (1) to be a mean square derivative and to consider the differential equa-

tion (1) over the Hilbert space Zn where Z denotes the space of second order
random variables. If A is a bounded operator over Zn (probably equivalent to
requiring A to be almost surely bounded) then the theory of ordinary differ-

ential equations would yield a unique solution given by (2), where the inte-
gral was a mean square integral, provided f(t) is mean square continuous. In
general, however, A may not be bounded, i.e. the product of two second order
random variables will not be a second order random variable and then the

appropriate theory discussing existence of a solution to (1) would likely be
a requirement that the solution be the action of a semigroup on the initial
condition. For example, if there exists a real number X such that:

0

[[%[+%o 0- A]- < C, for all complex A with Re A>O, C1 a real

number and [1 11 denoting the norm over Rn, then there will be a solution in
the mean square sense to (1) and further:

2A teAto T.Ato T

E[(e x) (e x )] < C2 e E[x Tx]

In particular if A can be chosen to be negative then the solution will be
asymptotically stagle. This approach to the problem exhibits a solution with
the only stipulations that x eZn and f(t) be mean square continuous. Another
approach to finding a mean square solution to (1) would be to require condi-
tions on xo, A, f(t) such that (2) is a solution to (1). If x , A, and f(t)
are mutually independent, then requiring eAt and AeAt to have second moments
would insure that (2) satisfies (1). The following elementary examples attempt
to illustrate the above discussion.

EXAMPLES

Example 1

Consider the first order homogeneous equation (n = 1).

dxdtax x(o) = x
74 0
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with a uniformly distributed between a and 3. Clearly a is a bounded operator
over Z thus, for example, if x0 is independent of a it follows that:

E[x(t)] (e - e ) E[xo]

If ý>O then E[x(t)] becomes arbitrarily large even if the mean of a is nega-
tive.

Example 2 p

Consider the above problem with the density of a given by:

P (a) = ae shown:
a

X < C if X > a
Although a is not a bounded operator over Z clearly __ + j -a C i

0

for all Re X>O. Thus a solution exists. If xo is independent of a then it
can be shown that

E[x(t)] = ae E[x ].
t+oF 0

Note again that if ý>O E[x(t)] becomes arbitrarily large.

Example 3

Consider the above example with a Gaussian with mean p and variance a.
Clearly a is not bounded and further no X. can be chosen to make IX+% I < C.

X+ -a

at at 0
However if a is independent of x then ae and e do have second moments and
it follows that: 0

t24 2

E[x(t)] = exp a + 2pta 2} E[x ].
2 o

a

However, regardless of a and -, E[x(t)] becomes arbitrarily large.

Example 4

Consider the above example with the density of a given by:
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P '(a) -ot (a-)

a a=ce shown:

Again it is not possible to pick a 0 such that:

1o

X-+-% -I < C and even if x is independent of a it can be demon-
0

strated that x(t) does not have a first moment for t>a. Thus it makes no
sense in this problem to attempt to calculate E[x(t)].

STATIONARY RESPONSE AND SPECTRAL DENSITY

Assume that the existence of the solution in the mean square sense to (1)
is known and is expressible as:

At ft eAt-)fTd
x(t) = e x t f e (t-T) f(-)d

0 0

If A, x , and f(t) are mutually independent and further if f(t) is stationary
with correlation matrix Rf then it follows that:

E[(x(t+A) - E[x(t+A)]) (x(t) - E[x(t)])T] = ft+A It E[eA(t+A-TI)
0 0

Rf01 1 -i2)e AT(t-n 2 ) ] dnI di12

If it can further be shown that leAtIj < Ce~t with ý<O, then it follows in
the usual way that as t goes to - x(t) becomes stationary with:

R (A) = f0I f E[eAnl Rf (A-nI + r2)eA T2 I dnidn 2x 0 0f 1 212

By taking the Fourier transform of R x(A) it is easily shown that the spectral
density of x(t) is given by:

-i -i
Sx (w) = E[ [A+iw] Sf (w) [A-iw] ]
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Example 5

Of the previous examples only Example 1 with ý<O and Example 2 with 8<O

eventually have stationary solutions. In example 1 (with ý<O) it is easily

seen that:

S() = () [tan -- tan -1 ] Sf(W)

If Sf(f) = 1 (white noise) then a plot of Sx (w) follows:

I

1

If a was not a random variable then S x(W) = 2+ 2 and a plot of this follows:
a +w

aa

SUMMARY

Those readers who have gotten to this point in the paper recognize

it as a fraud. The paper (1) presents a physical problem, i.e.: how do you
calculate the statistical properties of the response of dynamical systems
which have random parameters, (2) presents possible mathematical models that
pertain to the physical problem and (3) presents, via simple examples, where
the problems are in trying to solve the problem. The result in example 3,
where a is Gaussian, shows that regardless of how negative the mean value and
how small the variance of a, the mean value of the solution goes to - as time
goes to -. In particular, it makes no sense to talk about the spectral density
of the solution.

In the opinion of the author closed form solutions to problems beyond n=l
are not feasible and current work centers around the study of the accuracy of
approximate methods that have been proposed in the literature.
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APPLICATIONS OF CATASTROPHE THEORY IN MECHANICS

Martin Buoncristiani and George R. Webb
Christopher Newport College

INTRODUCTION

Consider a system under the influence of control parameters c. It may hap-
pen that for some values of c the system has more than one stable equilibrium
state and consequently a continuous change in control may cause a discontinuous
change from one equilibrium state to another. This occurs, for example, in the
"snap-through" of a compressed beam under transverse loading. This kind of
abrupt transition between stable equilibrium states - a branching or bifurcation
- has been the subject of much study (ref. 1 to 4) and recently the French top-
ologist Ren6 Thom developed a theory which presents seven standard types of dis-
continuous behavior (ref. 5 to 6), called elementary catastrophes, and proved
that any discontinuous behavior in systems controlled by not more than four var-
iables is one of these seven elementary catastrophes. Thom's theorem is remark-
able for providing a classification of discontinuous behavior but it is also
useful as an aid to visualizing phenomena of this sort. The proof of the theor-
em is difficult but its results are easy to understand and to use in problems
involving bifurcation.

Applications of Thom's theory to problems in mechanics are just beginning
to appear. The first problem solved appears to have been an example by Zeeman
(ref. 7) and his co-workers. This example has recently been generalized by
Woodcock and Poston so that it can describe higher order catastrophes.

The most extensive studies come from the group of researchers that work
with J. M. T. Thompson of University College, London. Thompson and Hunt (ref.
8) correlate their own theories of elastic stability for discrete systems with
the work of Thom and suggest possible fields in which the theory will give sig-
nificant insights. Troger (ref. 9) suggests the nature of such insights in his
study of von Mises truss and a shallow arch from the point of view of catastro-
phe theory, and Fowler (ref. 10) in his paper on the Riemann-Hugoniot shock does
the same.

Chillingworth and Guckenheimer apply the theory to continuous systems.
Chillingworth (ref. 11) uses a generalization of Morse's Lemma to Hilbert spaces
to reduce the study of the buckling of a beam to a problem in finite dimensions;
Guckenheimer (ref. 12) discusses catastrophes and Hamiltonian systems.

The papers by Schulman (ref. 13) on phase transitions, Kozak and Benham
(ref. 14) on denaturation, and Mehra and Blum (ref. 15) on the ignition of paper
provide examples in the realm of thermodynamics. Detailed bibliographies of ca-_
tastrophe theory and its applications to problems in other areas can be found in
reference 16
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STRUCTURAL STABILITY OF POTENTIAL FUNCTIONS

In this paper we will describe a method, using Thom's classification of
catastrophes, for the analysis of stability of systems whose static behavior is
derived from a potential function. Examination of the stability of singular
points of potential functions will serve to illustrate the nature of the elemen-
tary catastrophes, which can also arise in non-conservative dynamical systems
as well as in the static case of potential theory.

The first step in examining the stability of systems admitting discontinu-
ous transitions is to clarify the notion of stable state. Early work of Poin-
care (ref. 17), and Pontryagin and Andronov (ref. 18) developed the notion of
structural stability which expresses two key ideas. First, equilibrium states
of a system are characterized by their topological type; it is the general shape
of a state which is important and not numerical values which it might take on.
In the case of potential functions the topological type is given by the number
of singular points. Second, discontinuous behavior of a system occurs for those
(critical) values of control parameters at which the equilibrium state changes
its topological type. Let C(=RP) be the space of control variables c, and X(=R)
the state space. The potential function is a smooth map, V(x,c), V:X x RP + R.
A point x is a singular point of V if DxV(x 0 ,c) = 0. The collection of control
points and their associated singular (state) points form a manifold, called the
catastrophe manifold,

M = {(x,c) X RP I DxV(x,c) =01 (1)

The dimension of M is p. Figure I illustrates M for a quartic potential. For
a fixed value of c, there is a fixed potential function Vc(x) with a fixed num-
ber of singular points. As this number changes with c it stratifies (or sub-
divides) the control space into open and dense regions in which this number is
constant, separated by boundaries across which it changes. Such a change will
occur whenever the manifold M has a tangent parallel to X, i.e. when D2 V(x) = 0.
A singular point x 0 is said to be structurally stable when D2 V(x0 ) ; 0. The set
of points which are not structurally stable appears as a folA F in the manifold
M.

F = c) E X x RP I D2V(x,c) = (2)

These are points at which the map projecting M onto C is singular. The set of
critical control variables at which the number of singular points changes (or
equivalently which have structurally unstable singular points) is called the bi-
furcation set B. This set is given by eliminating x from (1) and (2):

B = M n F

In Figure 1, B appears as the cusp in the c-plane.

In the neighborhood of a structurally stable point xo(D2V(x 0 ) e 0) the po-
tential is quadratic, that is there is a curvilinear coordinate system x in
which V(x) - V(xo) = V-. To investigate the behavior of the potential in a
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neighborhood of a structurally unstable point Thom developed the notion of a
universal unfolding of a singularity. Consider a perturbation of the potential
V ÷ V + 6V where 6V and all of its derivatives are small. Two possibilities
arise - either the perturbation gives rise to an infinite number of different
topological types of the potential or only a finite number. In the latter case
the variation of V can be parameterized by a finite number of variables which
can be identified with the control variables, as

6V = clhl(x) + c h 2 (x) + ... cphp(x) (3)

This variation is universal in the sense that any variation of V depending on
p-parameters can be obtained by a transformation of (3). For example suppose we
begin with a cubic potential V(x) = x 3 , so that 0 is a structurally unstable
point. If this potential is perturbed by 6V = ax the topological character of
V + 6V is described by the value of the parameter a as follows: for a ý. 0, V
has one root, an inflection point, and for a < 0, V has 3 roots, thus one maxi-
mum and one minimum, c.f. Figure 2. The importance of this result of Thom's
work is that for all potentials with the same singularity type perturbations
need depend on only one parameter, and their behavior is of the fold type illus-
trated in the following examples. The number of parameters involved in the var-
iation of V is called the codimension of the singularity. All singularities of
codimension •4 have been analyzed by Thom. There are four potentials depending
on one state variable and these have the following form:

x + ak_ 2 xZ-2 + aZLlxk-1 + ... alx

We now summarize these results by stating a version of Thom's Theorem that
we will use in the examples of the next section. This version is given by Chow,
Hale and Mallet-Paret in reference 4

Thom's Transversality Theorem and Catastrophes

Let V(x,c) : X x RP - R and f(x,c) H dV/dx, so that the singular points of
V are given by f(x,c) = 0. If x 0 is a singular point of V, f can be expand-
ed in the form

f(x,0) = Axk + 0 (ixik+l)

where A ; 0 and k gives the order of the singular point. Expand the derivatives
of f with respect to the parameters:

k-2 k-i
(x,0) = X AiD _x + 01xI

9ci j=0 j! i

Then when p • k-l and

rank (A..) = k-1

there exists a smooth transformation of coordinates
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. hi(cl...cp)

x = h 0 (x,c1 ... cp)

such that

(X =:R + T1+ 7 + 7k-1 k:ik -2f(x,) - ~--

APPLICATION OF CATASTROPHE THEORY TO DISCRETE SYSTEMS
WITH ONE STATE VARIABLE

In this section we will concentrate on the simple case of potentials de-
pending upon one state variable and two control parameters; problems of more
generality are approached in a similar manner. The physical problems we have
studied are traditional in elastic stability: an imperfection-senstive strut
and a truss that can experience snap-through. These two problems contain many
of the features of more general problems, and the results obtained can be dis-
played clearly in a graphical form. Similar problems have been treated by Koi-
ter, Thompson and Hunt, Sewell and Ziegler.

Application 1: A Strut With Imperfection Sensitivity

Consider the rigid hinged bar of length 1 that is held in a vertical posi-
tion by a linear spring, with spring constant k, that is loaded by a vertical
force P with an eccentricity e = ýi (see fig. 3). The spring is attached to
the strut at a distance h from the base and is supported on its other end so
that the spring remains horizontal. The coordinate a, which is measured between
a vertical line and the axis of the bar specifies the state of the system. The
dimensionless parameters -P and p are the controls.

kh-T
The force function f is the gradient of the internal and external poten-

tials:
kh 2

f = f(O;X,') = 2 [sin~cos6-X(sin6+pcos0)]

We begin by finding the surface f = 0, which is the catastrophe manifold, and
the points of structural instability f, 0 = 0. Upon solving these two equations
in three unknowns we find

Ac = (1 + M2/3)-3/2

Oc tan-l(ol/3)

where the subscript c denotes the critical condition of structural instability.

Next we prepare to use Thom's Theorem. We expand f about the critical val-
ue of the state variable and note the leading term. Here we see that in the
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case where a ± 0, f (expanded as required) is of the order two in the variable
x = C-@C. If 't = 0, f expanded is of order three.

Let us first consider the case where f is of order two. The index k equals
2 and n, the number of control parameters, is also two. Therefore the inequali-
ty in the theorem is satisfied. We note also that f evaluated at the critical
point vanishes, a further preliminary of the theorem. In order to determine the
nature of the catastrophe manifold along this portion of the bifurcation set, we
must find the rank of the matrix A which is defined in the theorem. Let f* be
f expanded about the critical point in terms of x. Now

f 1 2
fX~x(;Xc1P) =-tkh2[(sinec+pCOSOc)+(coOSc-pSinOc)X + ..

f(x;;Xc,II) =2-kh2[ X•ccosXcl sino cX +

and therefore

kh2

A -•- =sinec+lc°Sec]

kh 2

2_ X cosO

The rank of A is one; the conditions of the theorem are satisfied. The
singularities are locally equivalent to a fold at points along the bifurcation
set away from (@c=0; Xc =, p=0). This behavior is identical to that of the cub-
ic potential discussed earlier.

If we consider this latter case of 0 =0, we find that the function f is lo-
cally equivalent to some form of a cusp, fhe case where k=3 in Thom's Theorem.
In order to identify the normal and splitting factors for the manifold (see fig.
1 for the meaning of these terms), and to display the canonical form of the pol-
ynomial, we expand f about the point (0=0; X=l, p=O). We need only retain terms
to the third order since the manifold is a cusp in this neighborhood.

f kh2[-C 3 + 2(1-X)e + 2X11]
4

If we place this expansion in the canonical form

f = 3 + -- + 7_k=7-- + x2C + X
-k kh2 / 4

we find that Ti = - 2 XV is the normal factor and X2 =-2(l-X) is the splitting
factor. The force function for this example is of the same differential type
as a cusp but the negative multiplier causes the loci of maxima and minima for
the related potential function to be interchanged. This type of force function
is the dual cusp and the behavior of the system on the catastrophe manifold is
altogether different from that on the manifold of a regular cusp (fig. 1).
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The bifurcation set in the control plane is described by 2751 = 43. This
1 2

relation is an imperfection-sensitivity curve and has the familiar two-thirds
power form. The equilibrium surface and the bifurcation set are shown in Figure
1. Notice the effect of the imperfection. It lowers the value of the-load at
which instability occurs. The area of the catastrophe manifold where Al > 0 is
composed entirely of unstable points; it is not accessible to the system. The
bifurcation set and a visualization of the equilibrium surface can also be pre-
sented as in Figure 4. This presentation is possible because the equilibrium
surface is a ruled surface: for each value of the state variable vector, the
equilibrium equation is an affine equation in the control parameters. The bi-
furcation set is the envelope of the projection of these lines onto the control
space. The three-dimensionality of these figures can be enhanced by a stereo-
graphic technique that is described in Woodcock and Poston (ref. 19).

Application 2: An Essential Modification of the Strut
With Imperfection Sensitivity

We will now modify the structure in Figure 3 so that the spring is attached
to a fixed point at a distance h from the level of the pivot and is fastened to
the rigid bar with a sleeve that allows the spring to remain horizontal. The
catastrophe manifold near the structurally unstable point (0=0; X=l, p=O) has
the form

f__ -
3 + 2.{-xe

3kh2

In this case the catastrophe manifold is locally equivalent to a cusp with nor-
mal factor A1 = -ZXp and splitting factor A2 = 2(1-X). Note the difference in
behavior between trajectories along this cusp and those along the dual cusp.

Application 3: A Symmetric Truss With Moveable Supports

In this example we consider a modification of the well-studied symmetric
structure that exhibits snap-buckling (fig. 5). The structure consists of two
linear-spring elements of unstretched length k0 and spring constant k that have
a horizontal projection of 2x and that are subjected to a downward load P. The
location of the tip of the truss with respect to a horizontal line through its
end points is denoted by y. We will analyze the behavior of this structure in
much the same manner as we did in example 1.

The force function f is

f = f(z;a,b) = z(1 - 1/(z2+a2)1/2) + b

where b = P/kk0
a = x/k0

and z =Y/0

The solution for the structurally unstable points of the mapping yields the
critical set of points whose projection on the control space is the bifurcation
set. An investigation of the behavior of the system on the bifurcation set
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away from the special point (z=O; a=l, b=O) shows that the singularities are
folds locally. A similar investigation in the neighborhood of the special point
indicates the expected cusp there.

In order to determine precisely the normal and splitting factors in the
neighborhood of the cusp, we expand the force function about the tip of the cusp
retaining only terms as high as cubic. We find that the force function can be
rewritten in the canonical form

2f = u3 + 71 + 7 2u
if

a

X = 2b

X2 = 2(a-l)

Therefore near the cusp tip (KX=O, -2=o)X1 =2b is the normal factor and
X2 = 2(a-l) is the splitting factor.

In this example the portion of the equilibrium surface behind the cusp is
accessible to the system. Deformations of the system can occur that will take
the state variable from values on the top of the cusp surface to values on the
bottom without the occurrence of a jump:

CONCLUSION

It is clear from these examples that catastrophe theory and the methods of
adjacent equilibrium and energy (given dynamical significance by their embedding
in the theory of Lyapunov) lead to similar results and require many of the same
calculations. Qualitative features of the singular behavior of systems, includ-
ing a unique visualization of discontinuous processes, can be gained quickly
from the representation of the catastrophe manifold. Catastrophe theory pro-
vides an exhaustive classification of structural instabilities in systems with
as many as four control variables and clarifies the nature of the controls. A
consistent set of controls must satisfy the rank condition of the transversality
theorem. This requirement pinpoints controls that are redundant and suggests
the need for additional ones; for example, it would haveforced the introduction
of the imperfection parameter in application 1 had it been omitted. There still
remains a good deal of work to be done before a unified theory of bifurcation is
developed and Thom's theory provides a useful set of ideas in this direction.
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Figure 4.- Ruled surface
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STABILITY OF NEUTRAL EQUATIONS

WITH CONSTANT TDES DELAYS

L. Keith Barker
NASA Langley Research Center

John L. Whitesides
Joint Institute for Advancement of Flight Sciences

The George Washington University

S UMARY

A method has been developed for determining the stability of a scalar
neutral equation with constant coefficients and constant time delays. A
neutral equation. is basically a differential equation in which the highest
derivative appears both with and without a time delay. Time delays may appear
also in the lower derivatives or the independent variable itself. The method
is easily implemented and an illustrative example is presented.

INTRODUCTION

Ordinary differential equations with time delays are called differential-
difference equations (ref. 1). Two basic types of differential-difference
equations are retarded and neutral equations. The stability of the solutions of
these equations is related to the roots of a characteristic equation. Generally
this characteristic equation is transcendental and thus has an infinite number
of roots.

A convenient method is developed in reference 2 for examining the
stability of retarded equations with many time delays (not necessarily distinct)
and a scalar neutral equation with one delay. The purpose of the present paper
is to develop the basic method of reference 2 for neutral equations with nany
time delays.

SYMvOTS

a.j, b., c, d real constants

H K(s) function of s in equation (11)

i imaginary unit, \l

J K(s) function of s in equation (12)

j integer
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K refers to TK

L(s) = 0 characteristic equation

L0 (s) resulting polynomial with zero delays in L(s)

N highest derivative in neutral equation

N(TK, -2) number of roots of L(s) with ( > at TK for fixed
Tip j j K

P(s) function of s in equation (20)

p integer

Q(s) function of s in equation (21)

s comple- variable, Cr + iL

IsIm an upper bound on magnitude of s which satisfies
L(s) = 0, where s = -2+ iz

t time

WK(a7, W) testing function defined in equation (17)

x(t) scalar function of time

a V 2 real numbers

C small positive number

positive real number

I specified value of g

real gain constant

a real part of s

r asymptote of real part of large modulus roots

T, TV K constant real time delays

½K final desired value of TK

4r(t) yaw angle, radians

w imaginary part of s

0ý m an upper bound on w in L(s) = 0, where s + Lo
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Mathematical notations:

I I absolute value or magnitude

arg argument

0+ arbitrarily small positive values

Dots over a symbol denote derivatives with respect to time.

ANA LYS IS

A method is developed herein for determining the stability of the neutral
equation

7_0 [aj i x•

j=00

where a. ý 0, bN #0, 0 <t , j=0, ,... , N -1,

and xQ)(t) denotes the jth derivative of x(t).

The characteristic equation associated with equation (1) is

N .e )sj = o (2)L(s) = 7- (a j + b.i e

j=0 0

It has been shovn (ref. 3) that if all the roots s = + im of
equation (2) satisfy the property

q < - < 0 (3)

where a is a positive constant, then the solution of equation (1) is of
exponential order as t - c; that is

jx(t)l < a e-C4 t (4)

where d > 0 is a constant real number and c is arbitrary on the
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interval (0, I). Hence, if all the characteristic roots have negative real
parts and are not asymptotic to the imaginary axis, then x(t) - 0 as t -

(asymptotically stable).

If there is a root of L(s) with positive real part, then equation (1)
has a divergent mode and is said to be unstable.

Relative Stability

If it can be determined that there are no roots of the characteristic
equation with real parts greater than a specified negative real number, then
the solution to the neutral equation is asymptotically stable.

Relative stability for a specified value g of g in equation (3) is
indicated herein by the number of roots of the characteristic equation with
a > -fZ. For example, the neutral system is said to be relatively more stable
when all the roots satisfy ( < -g < 0, than when there is a root withA

-• < t < 0. Relative stability boundaries in the plane of two system parameters
are boundaries corresponding to a root with (T = -12.

The stability method to be presented is based on determining the number of
roots of the characteristic equation with real parts greater than a specified
negative real number -/1. The method is convenient for determining the number
of roots of the characteristic equation with real parts located between specified
negative real numbers. The approach consists of separately examining the
arbitrarily large modulus roots and the finite roots. The large modulus roots
are examined by using a simple expression for their asymptote; whereas, the
finite roots are examined by computing the magnitude of a complex-valued function
on a finite interval.

Large Modulus Roots

All roots of equation (2) must satisfy the inequality

IaNj - 1b,1 e EsN lN9r a I + Ib r e SI Isli (5)Sj=0 (

obtained from equation (2). It can be shown that since aN J 0 and bN 1 0,
the roots have bounded a. Hence, in order for the large modulus roots
(!sl - ) to satisfy equation (5)

lim -b N e = 0 (6)
7s6
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From equation (6), • becomes arbitrarily close to

1 ln N
-- TN b(7

This relation represents the asymptote of the large modulus roots and is shown

graphically in figure 1.

For < 1 in figur 1, ( > 0; and equation (3) with a is not
saife.bN No a- caN A ^

satisfied. Now, consider - > 1 and let a = -C correspond to TN = TN

A

in figure 1. Then, = qo satisfies equation (3) with [ L , whenever

a N
= n - (8)

rN < N b N

There are then no infinitely large modulus roots with 7 > -7 in the neutral
system. It remains to examine the number of finite roots with c > -i.

Finite Roots

For -i - 0+, L(s) has N roots arbitrarily close to the N roots of

the polynomial equation

L0s) N 0aL (s) = N (a. + b.s 0 (9)

and the remaining roots have arbitrarily large moduli (ref. 2). For
a N A

TN -ý 0+ and N > 1 in equation (7), co* -• < -9A. Therefore, L(s) and
N b N

LQ(s) have the same number of roots with 7 > (initial relative stability).
Since the complex roots occur in complex conjugate pairs, only roots with non-
negative imaginary parts (w => 0) are considered.

As one of the time delays, say T, is increased in a continuous manner
with the remaining delays held fixed, tY e finite roots of L(s) move in some
continuous manner (ref. 2), generating root locus curves in the complex root
plane (s-plane).
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AIntersection Points s = -9 + im and
Corresponding Delays

A root locus curve must intersect the -0-line (dashed line) in figure 2
in order for the number of roots of L(s) with • > -[ to change. These
intersection points (-11, w) and the corresponding values of the delay r K
which result in these intersection points are discussed in this section. The
change in the relative stability as a root locus curve crosses an intersection
point is presented in the next section.

For a specific time delay TK, equation (2) can be written as

L(s) =K(s) - JK(s ) e =0 (0)

where

N N s 1 1
E a.s + Z b.s e )

j=0 J j=0 O
jK

and

s= K -bK s ()

A
At an intersection point s = -• + io, equation (10) is equivalent to

A
itK

[H A(-•' )l) e K(13)

and

4K arg +-2p (14)

where Il(-y _[. ) n

where HK(-/, _ )= HK(-/ + Im), JK(-•, •)= w) + ), and

- A <arg 5-t (15)K(-^

It is assumed that Cw 1 0 and HK(-9h, w) j 0. To handle these special cases,
the approach used in reference 2 may be followed. Only non-negative values of
the integer p in equation (14) are of interest because TrK _• 0 and w > 0.
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Equation (13) gives the points (-11, wD) where the root locus curves
intersect the -9^-line in figure 2, and equation (14) gives the corresponding
values of TK which result in these intersection points. In general, the
values of w at an intersection point must be found by an iteration process.
The values of w which may satisfy equation (14) are restricted to some finite
interval (0, wjm], where Cm is an upper bound on m determined from
equation (5). Also, a useful bound on the integer p in equation (14) is
obtained as

m__ K (16)

where T <K K and w - w"

Change in Number of Roots
With , > -4

Let (-K, -9) denote the number of roots of L(s) with c > -i at TK

for fixed tu., j j K; and define the testing function

i K((7, w) -c•TK
W -H77 ) e (17)

Then, the following theorem can be used to determine the change in the number
of roots of L(s) with 7 > -g as TK varies.

Theorem: Let (-11, w) be an intersection point with cor-responding delay TK'

Let a < w and a2 > C be real numbers for which WK(-, 0ý1 ) and WK(-9, ½2
are defined, and such that there are no other intersection points with
imaginary parts which lie on the interval [ai 1C 2 ]. Then, for • an
arbitrarily small positive number

(1) N(-rK + E, -')= r(K, -,) + 1

if !WK(--I, C!)j > 1 and IWK(-, a2 )1 < 1;

(2) N(-"K + , -4): N(TK, -) - 1

if 1W:(-W , !)I < 1 and T:(-2, C2)I > 1; and

(3) N(-rK + N, -r) = W(TK, -47) if both
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1 K(-4,11a) J and JWK(-4, a2 l are greater than I or both less than 1.

This theorem is developed in reference 3 by extending the 'r-decomposition
method, as refined by Lee and Hsu (ref. 4).

The theorem is interpreted as follows: Let (-W, c) be an intersection
point, where '9 is specified and m is a root of equation (13). If this is
the only value of w on the interval al c w-< a 2, which satisfies
equation (13), then the change in the relative stability at the intersection
point is determined by computing !WK(-', a1 )! and 'WK(-f, A•2. For example,

from condition 1 of the theorem, if 1WK(-•, al)! > 1 and 1WK(-Ž, a2 )l < 1,
then the system gains exactly one root rvith t > -9; that is, N(rK Y ,
N(TK, U~) + 1. (r '

The values of TK at all the intersection points are ordered by

increasing magnitude to obtain the change in the relative stability as TK

increases to its final desired value T-K' As each delay is varied, that
delay becomes TK in the theorem.

Intersection points (-9, (D) satisfy equation (13), or JW K(-, .)l

In choosing al and a2 in the theorem, it is expedient to note that

1WK(-1, Cu)! increases as p increases for each value of Cw e(O, wm].

APPLICATION

The relative stability of the neutral equation

.01024 *(t) + .00704 v(t) + .250 *(t) + .163*(t - -K) = 0 (18)

where ý is a system gain constant and T K > 0 is a constant time delay may

now be determined. This equation was used in reference 5 in examining a yaw
damper control system for an airplane with rudder deflection made proportional
to the yawing acceleration.

The characteristic equation associated with equation (18) can be written
as

-TK s

L(s) = P(s) - Q(s)ýe 0 (19)

where

P(s) = .01024s 2 + .00704s + .250 (20)

Q(s) = .163s 2  (21)
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With s =-i + iw, equation (19) can be used to write

A

( ehTK (22)

Q(/[ (23)
and

. arg + 2pf (23)

Now, with i specified, equations (22) and (23) can be used to partition the
plane of • and TK into different regions as w > 0 is allowed to vary.
The solid lines in figure 3 were generated in this manner. Any point on a
partitioning line or boundary corresponds to a root locus curve intersecting
the -g-line in figure 2.

To examine the stability condition (stable or unstable) or the number of
roots with a > -i1 in the regions of figure 3, it is useful to write
equation (19) in the form

L(s) IHK(s) - JK(s)e 0 (24)

where

H K(s) = P(s) (25)

and

JK(s)= .Q(s) (26)

The initial stability of equation (24) along the 7-axis (T K -• 0+) is
evaluated by using equations (7) and (9), which become

1 In 01024 (27)

rK 16n

and

L0(s) (.01024 + .i63ý)s + .00704s + .250 s 0 (28)

For TK-4 0+ and ý = .04, there is one root with a = -. 21 and a -c -m.

As TK increases from 0& with • .04 in figure 3, the relative stability
boundary for -g = -. 5 is intersected. For this intersection point, it can
be shown that a, and a2 in the theorem can be chosen as al = 3 and
a = 4. Then, since TWK(-.5, 3)1< I and IWK(-.5, 4)1 > 1, condition 2 of
the theorem applies. Thus, the neutral system loses one root with a > -. 5.
(This is the root which originally had a = -. 21.) Inside the closed region for
-i = -. 5, there are no roots with a > -. 5. This same procedure is used to
determine which side of the curves in figure 3 should be hatched.
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The hatching convention is as follows: Passing from the hatched (unhatched)
side of a boundary line corresponding to a particular value of g to the
unhatched (hatched) side of the boundary results in the gain (loss) of exactly
one root with o > -4'.

At the point (', 'rK) = (.04, .2), the system has no roots with a > -. 7.
The value of 70 in equation (27) at this point is q' = -2,257.

CONCLUDING REMARKS

A method has been developed for determining the stability and relative
stability of scalar neutral equations, with constant coefficients and constant
time delays. The approach was to determine the number of roots of the
characteristic equation with real parts greater than specified negative real
numbers. The method consists of separately examining the large modulus roots
and finite roots. The large modulus roots are examined by using a simple
expression for their asymptote; the finite roots are examined by computing
the magnitude of a complex-valued function on a finite interval.

The stability method is convenient for determining the number of roots of
the characteristic equation with real parts located between specified negative
real numbers. An example which has occurred in practical application has been
provided to illustrate the method.
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CUBIC SPLINE REFLECTANCE ESTIMATES

USING THE VIKING LANDER CAMERA MULTISPECTRAL DATA

Stephen K. Park and Friedrich 0. Huck
NASA Langley Research Center

SUMMARY

A technique was formulated for constructing spectral reflectance estimates
from multispectral data obtained with the Viking lander cameras. The output
of each channel was expressed as a linear function of the unknown spectral
reflectance producing a set of linear equations which were used to determine
the coefficients in a representation of the spectral reflectance estimate as
a natural cubic spline. The technique was used to produce spectral reflectance
estimates for a variety of actual and hypothetical spectral reflectances.

INTRODUCTION

The Viking lander cameras (ref. 1) will return multispectral images of
the Martian surface with four orders of magnitude higher resolution than has
been previously obtained. It is desired to extract spectral reflectance curves
from this data. However, the data are limited to 6 spectral channels and most
of these channels exhibit out-of-band response.

It is inappropriate to generate a data point for each channel by
associating a reflectance value with a distinct wavelength; this is particu-
larly true for those channels with appreciable out-of-band response. It is
unlikely that data points so constructed will lie on the true spectral
reflectance curve, and that any method of fitting a curve to these points
will adequately approximate the true reflectance.

Instead the output of each channel can be expressed as a linear integral
function of the unknown spectral reflectance and the known solar irradiance,
atmospheric transmittance, camera optical throughput, and channel responsivity.
This produces 6 equations - one per channel - which can be used to determine
the coefficients in a representation of the spectral reflectance as a natural
cubic spline. In this paper the appropriateness of this technique is demon-
strated by using it to produce accurate approximations to the true spectral
reflectance of 8 materials felt likely to be present on the Martian surface
and 16 hypothetical spectral reflectances chosen for illustrative purposes.
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FORMULATION

Let p(X) denote the (unknown) spectral reflectance at wavelength A of
the material that is imaged by the Viking lander camera. Knowledge of p(X) is
limited to 6 spectral samples. Except for a channel-dependent, multiplicative
constant, which can be determined by a calibration using as reference a test
chart on board the Viking lander (see ref. 2), these 6 spectral samples are
given by bi where

bi =f Ti(,) p(X) dX i -- 1,2,...,6 (1)
0

The system transfer functions T (x) are given by

S(x) Ta(X) Tc(X) R.(X)1 12 6

T.(X) = i = 1,2,...,67- ti

where S(x) is the solar irradiance, TOa() the atmospheric transmittance,
Tc(X) the camera optical throughput, Ri(X) the channel responsivity, and ti
is a constant chosen so that

f00 T i(,) d X :1i = 112, ... 16

0

Plots of typical system transfer functions are shown in figure 1. Note
specifically the appreciable out-of-band response of the Blue (i=l), IR2
(i=5), and IR3(i=6) channels. Note also that with the possible exception of
the Green (i=2) channel, none of the system transfer functions are adequately
approximated by an impulse function.

THE REFLECTANCE ESTIMATE AS
A NATURAL CUBIC SPLINE

Equations (1) describe the relationship between the 6 multispectral
samples bl, b 2 ,...,b6 and the unknown reflectance p (x). These six equations
can be used to produce a natural cubic spline estimate of p(X), denoted
< p(x) >, where

7< p(M)>: E :x C~x (2)
j=O
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The 8 knots X0, •i,''',.7are chosen to be equally spaced and located at
the wavelengths

Xj = .33 + j A j = 0,1,2,...,7

where the spacing is A= .12 ýLm. Recall that each cubic spline basis function
C(X -Tj) is a bell-shaped curve centered at the knot X. and defined by C(X)
where

2 1 3
2/ A, 2 A

2 _ _a +- ;,,. <I'l A

C AA

The coefficients xo, X1 ,.. .,x 7  are to be determined.

It is desirable to impose the natural boundary conditions < p(X) >!1 = 0
at the knots T1  and T6. These two conditions give rise to the equations

x0 - 2x1 + x 2 = 0 (3a)

and

x5 - 2x6 +x 7 = 0 (3b)

The remaining six equations which determine the 8 coefficients are obtained by
requiring the estimate < p(X) > and actual reflectance pO() to have in-
distinguishable camera multispectral responses (ref. 2), i.e.,

f 0O T i k<p k> d?,f0mT.i(ý,)p (X)d X i = 1,2,...,6 (4)

This produces the six equations
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7
Saij x. = b. i = 1,2,...,6 (5)

j=O a

where b. is given by equation (1) and1

0a

To summarize, a natural cubic spline reflectance estimate corresponding

to the multispectral sample bl, b 2 ,...,b 6  can be produced as follows:

(i) evaluate the 6x8 = 48 coefficients a.. given by equation (6)

(ii) determine the 8 coefficients x. by solving equations (3a),
(3b), and (5) a

(iii) form the estimate <p (X)> given by equation (2)

The estimate constructed in this manner reduces to an interpolating spline
in the idealized situation where each system transfer function can be repre-
sented as an impulse function. To see this suppose that

T.(X) = 8(X-Xi) i = 1,2,...,6

where the impulse system transfer functions occur at the discrete wavelengths
xl' ?2'..?6 . In this special case

bi f C (X-X)p(X)dX =p(X) ip1,2,...,
0

and

a f 3(x-xi) C (X-- )d C (Xai-

so that <p(X)> is the (unique) natural cubic spline which interpolates the
spectral reflectances p(Xi), P(x2),, P(X-6 )"
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RESULTS

Reflectance estimates were computed for 8 materials felt likely to be
present on the Martian surface and for 16 hypothetical spectral reflectances
chosen for testing and illustrative purposes. These estimates are presented
in figures 2, 3, and 4. In each case the actual spectral reflectance is shown

as a sequence of 71 discrete points (circles) in the wavelength range

.4 < x < 1.1 pm and the corresponding estimate is shown as a continuous curve.
For each of the spectral reflectanc.es the corresponding multispectral sample

bl,b2,...,b6 was calculated from equation (1) using a 71 point Simpson's Rule.

The coefficients aij were calculated in the same manner from equation (6)
assuming each system transfer function to be zero outside the effective range
of the camera photosensor arrays, namely .4 < X K 1.1 pm.

Figure 2 illustrates the reflectance estimates, for the 8 materials felt
likely to be present on the Martian surface. For those 5 simple reflectances
(i.e., pinacetes 5 and 28A, Syrtis Major, augite, and average Mars) the
estimates are excellent. For the 3 more complex reflectances (i.e., limonite,
hypersthene, and olivine) the estimates are very good. The dominant features
are reproduced; however, due to the undersampling inherent with just 6
channels, small period features are lost. Note particularly that the dominant
absorption band (at 1 .93 pm) for hypersthene is quite accurately estimated.

Figure 3 illustrates the reflectance estimates for 8 hypothetical spectral
reflectances. The first 4 of these spectral reflectances (3a, 3b, 3c, and 3d)
are very smooth and the corresponding estimates are almost exact. The next
four (3e, 3f, 3g, and 3h) are not smooth but the estimates remain good. Note
specifically that the pronounced minima in 3e and 3f are accurately reproduced.

Note also in 5g the characteristic oscillation exhibited by the natural cubic
spline in the neighborhood of a large slope. In 3h the loss of small period
features is again evident.

Figure 4 illustrates the reflectance estimates for 8 additional hypo-
thetical spectral reflectances. All 8 of these are of the form

p(X) .25 + .2 sin Tr ( ) (7)

where the parameters o,p have the values:

figure 4

a b c d e f g h

S.4 .275 .4 .31 .4 .33 .4 .35

FB .25 .25 .18 .18 .14 .14 .1 .1
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As the period becomes shorter (i.e., as P decreases), the quality of the
reflectance estimates deteriorates. This is particularly evident in the
sequence 4a, 4c, 4e, 4 g and less evident in the sequence 4b, 4d, 4f, 4h. It
is also true that the quality of the estimate is affected by the location of
dominant spectral reflectance features relative to the location of the system
transfer functions. This is illustrated by figures 4e and 4f where the
spectral reflectances differ only by a shift of .07 Pm while the corre-
sponding estimates differ dramatically. Figure 4 g is a clear demonstration
of aliasing whereby a short period harmonic spectral reflectance curve has a
reflectance estimate which is nearly harmonic but with a larger (false) period.

CONCLUDING REMARKS

A technique was formulated for constructing natural cubic spline spectral
reflectance estimates from multispectral data obtained with the Viking lander
camera. Using this technique it was demonstrated that smooth, simple spectral
reflectance curves can be estimated almost exactly. For more complex spectral
reflectance curves, large period features can be faithfully reproduced; small
period features are lost due to the undersampling inherent with the limited
number of spectral channels. The technique completely compensates for system
transfer functions with irregular shapes and appreciable out-of-band trans-
mittance. Moreover the technique should be a valuable aid in selecting the
number of spectral channels and their responsivity shapes when designing a
multispectral imaging system. This design approach would prove to be of value
especially if spectral reflectance properties of interest are known a priori
and if the transfer function shapes are desired to be broad to obtain good
signal-to-noise ratios.
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Figure 2.- Spectral reflectance estimates for (a) average Mars,
(b) Syrtis Major, (c) pinacetes 5, (d) pinacetes 28A,
(e) augite, (f) limonite, (g) olivine, and (h) hypersthene.
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DATA MANAGEMENT IN ENGINEERING

J.C. Browne
The University of Texas

SUMMARY

Engineering practice is heavily involved with the recording, organization
and management of data. This paper is an introduction to computer based data
management with an orientation toward the needs of engineering application.
The characteristics and structure of data management systems are discussed.
A link to familiar engineering applications of computing is established through
a discussion of data structure and data access procedures. An example data
management system for a hypothetical engineering application is presented.

NEED FOR DATA MANAGEMENT

Formal data management procedures become necessary for a body of informa-
tion when the information

"o has an extended useful lifetime,

"o is shared among or used by a substantial group of workers,

"o has established relationships among data items.

The use of computer based data management systems is justified by combinations
of several circumstances.

" The volume of data outstrips convenient use through traditional
media such as handbooks, microfilm, ekc.

" The data is produced through computer processing and will perhaps
be subjected to further computer processing.

"o The data requires frequent revising and updating.

"o There is a large and geographically compact group of users.

It is clear that many types of engineering projects meet both sets of criteria.
The design of an aircraft or ship makes a cogent example. The design process
depends heavily upon the use of computers. The design process may take several
years and involve hundreds of engineers. The design data may involve millions
of words of specifications and an immense volume of numeric data. 1% or 2% of
the data change on a weekly or monthly basis over much of the design cycle.

Engineers have traditionally been heavily involved in the classical forms
of data management such as data compilations, design handbooks and system main-
tenance manuals. Computer based data management has been relatively slow to
penetrate standard engineering practice. This may be in part due to the fact
that engineering education tends to stress the use of computers as numerical
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problem solvers rather than as information managers. It is certainly in part
due to the fact that most existing data management systems are oriented towards
commercial and business data processing applications.

Engineers have now begun turning to computer based data management for
assistance. Since available data management systems are not in general well-
suited to engineering applications there is considerable activity in the
engineering community towards designing and implementing data base systems
which are useable in engineering environments. It is the purpose of this paper
to give a perspective on the design and implementation of such data management
systems.

Three recent texts, Martin (ref. 1), Date (ref. 2) and Katzan (ref. 3),
cover data management systems in readable fashion.

DATA STRUCTURES, DATA REPRESENTATIONS
AND STORAGE MAPPING FUNCTION

The basic concepts of data management, data structuring, data re-
presentation and storage mapping functions are presented in the familiar context
of general purpose programming languages such as FORTRAN or PL/l. Data manage-
ment systems present and utilize these concepts in more formal and complex forms.

A data structure consists of a conceptual object, i.e., a sparse array, a
name or name set for referring to the object and a set of operations on the
object.

A realization of a data structure consists of a storage mapping function
which maps the name space of the data structure onto a memory structure and the
definition of the operations on the structure in terms of primitive operations.

These definitions are completed by defining a storage or memory. A cell
is a physical realization which holds a value. Memory consists of an ordered
collection of cells. An address is the location in memory for a given cell.
A value is an instantiation of a data object or data structure. A storage
mapping function accepts a name as input and produces an address of a cell (or
cells) in memory as an output.

The definition and realization of a data structure thus consist of a se-
quence of actions:

"o A structure declaration which defines the data type.
"o A name assignment which associates the name with a type or

structure.
"o The definition of the operations on the structure. The only

required operations are of course storage and retrioval.
"o An allocation of memory to the named instantiation of the data

structure.
"o The definition of the mapping function which maps the name space

onto the allocated memory space.

This sequence of steps is seldom clearly delineated in traditional programming
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languages. A FORTRAN DIMENSION or COMMON declaration of a rectangular array
executes all of the above steps except the definition of operations upon the
array. DIMENSION A (10,10) recognizes the square array as a data structure
of the program, associates the name A with the array, assigns 100 contiguous
cells of memory each of which will hold a floating point number and assigns
the implicit familiar mapping function.

Address [A(I,J)1 = A(1,1)+10(I-1) + (J-l) (1)

The definition of operations on an array (except for I/0 operations) must be
defined by the programmer in terms of operations on the primitive data objects.

The most complicated data structure definable in FORTRAN is a multidimen-
sional array of identical objects. PL/l allows arrays whose elements are not
identical. Data management systems may allow the definition of considerably
more complex structures which include the stipulation of relationships between
the data elements in a structure. The aspect of this problem not familiar to
the scientist and engineer is the representation of the data structure in the
computer memory system and the definition and implementation of storage mapping
functions.

The familiar storage mapping function of equation (1) takes the name
A(I,J) as input and evaluates the expression on the right hand side for output.

This mapping function has the very useful property of mapping names onto
addresses in a unique one-to-one fashion. There are other possible mapping
functions which do not have this property even for the simple case of square
arrays. Consider, for example, the mapping function

Address [A(I,J)] = (I x J) MOD N (2)

with N = 101. It is easily seen to generate identical addresses for many index
pairs. It is the general case in data management applications that the magni-
tude of the name space is much larger than the potentially realizable address
spaces. Thus, storage mapping functions which "fold" the name space into a
smaller domain and thus lose the one-to-one property are required. Such
storage mapping functions typically have several functional phases and are
fairly complex. The example data management system which is specified in the
last section of this article uses an inverted file or dictionary look-up
storage mapping function to locate records and the mapping function defined
succeeding to map data elements onto records.

Figure 1 defines a record structure for data relating to the design cycle
of the wing section of an aircraft. Figure 2 displays the heirarchical re-
lationships among the data elements. This structure defines the occurence of
40 data records on the design and evaluation of wing sections. The leftmost
numbers in Figure I define the level in the definition hierarchy as shown in
Figure 2. The components at any level with no immediately succeeding compo-
nents at a lower level are terminal nodes of a tree. The bracketed numbers
on the right hand side of the terminating nodes are the number of primitive
data objects in each instance of the defined object. The bracketed numbers on
the right hand side of the non-terminal nodes in the tree are the number of
instances of the structure for which storage is to be allocated.
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It is convenient to describe the structure in tabular form. (See Table 1). It
is: desired to allocate storage for each record in a contiguous block with each

terminal node of the tree being stored contiguously for each instance of the

structure or sub-structure. Let us define a reference expression (,name) which

orders the names of the structures from left to right by level.

A I 1 )A2 (I2)A 3 (I3)

A1 (I1 )A2 (12)A 3

th

The reference expression WS(II)SD(I 2 )DH(I 3 ) refers to the I storage element

within the 1th instance of SD within the Ih instance of WS. WS(I1)SD(I2)

refers to the 15h instance of SD within the Ith instance ot WS while WS(II)SD
I th

refers to all 10 instances of SD within the I1 instance of WS. A storage
mapping function with the one-to-one propetty for these reference expressions

can be derived (ref. 4):

k
address[Al(I)A 2 (12)...Ak(Ik)] = [Q(Ai) + M(Ai)(Ii-l)]

i=l

where Q(Ai) and M(A.) are constants for each record element.
The constants Q and M can be defined recursively.
1. If A. is a terminal node of the structure, then M(A.) = 1.1

2. If A is a structure or sub-structure with a typical instance
B1- Bn n

M(A.) = 7 C(B.)M(B.)
Si=l 1 1

3. If BI'''Bn is a sub-structure definition, then

Q(BI) = 0

Q(Bj) = Q(Bj_1) + C(BjI)M(BjI), j>l

Q(A) = 0, for root of tree
4. If B is the last item in a sub-structure B ... B of A, then

n M(A) = Q(Bn ) + C(Bn)M(B) n

The last two rows of Table 1 give the results of the calculations for the record
structure of Figure 1.

Bertiss (ref.5) and Elson (ref.6) are good general references for further
information on data structure. Knuth (ref. 7 and 8) is the most complete source
for work prior to publication data in the areas of his coverage.

AN EXAMPLE DATA MANAGEMENT SYSTEM

This section will illustrate the structure of a prototype data management
system for engineering data. The example system will be designed to store and
retrieve design data on the wing sections of an aircraft.
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The components of a data management system are:

1. A data structure definition capability: This includes a set of primitive
data objects and a set of composition rules which will enable a user to create
a structure which represents the objects of interest. The set of primitive
objects and composition rules comprise what is often called the data definition
model or data model in the data management system literature. A structure de-
fined by the composition rules will be said to constitute a logical record.
2. A storage mapping function which enables access to the components of a logi-
cal data structure or logical record.
3. A representation which packs logical records onto physical records in exe-
cutable memory.
4. A storage mapping function which determines the address of a logical block
and the address of the physical block which contains it.
5. A block transfer function which transmits physical records to and from
auxiliary memory.
6. A query language which allows the user to express his storage/retrieval
requests in an application-oriented format. Commercial data management systems
often have very highly developed query languages. It is often the interface
which sells the system more than its internal performance. It is generally the
case in scientific/engineering computing that simple or specialized query
languages will be all that is required. The users of the system will often
by familiar with programming and programming systems.

We proceed by defining for our example system each of the components
previously described.

1. Data definition model: The primitive objects which we will need will be
character strings, real numbers, integer numbers and real vectors. We will
allow the composition of arbitrary tree structures utilizing these primitive
data types. Figure 3 defines a logical record for a wing section similiar to
the ekample in the previous section. The record consists of a character string
for the aircraft designation, a set of design parameters including thickness,
flexibility coefficient and strut spacing, each of which is a real number and a
set of stress values which is a vector of length 25 of real numbers. Figure 4
is a tree structure for this data. The [151 following the record declaration
declares that a physical record will contain 15 logical records. The primary
purpose of this system is to be able to examine the stress values as a function
of design parameters. It is anticipated that entire records will be added or
deleted from the file but that records will seldom be altered or modified.
2. Storage mapping functions for logical records: We use the storage mapping
function defined for hierarchical structures in the previous section.
3. Data representation in physical memory: The logical record will be organi-
zed and stored on physical record blocks (PRB) of 512 words in length. Each
logical record will require 30 words. Fifteen logical records will be stored
on each physical record block. Forty-five of the remaining sixty-two words will
be used for the location in the PRB of logical record instantiations which con-
tain a given design parameter value.
4. A storage mapping function for addressinglogical records from physical
records: The storage mapping function will utilize an inverted file structure
(ref. 1). Each design parameter will be represented as an inverted file. An
inverted file is a tabulation of record addresses associated with a given name
or structure component whereas a normal file contains the values associated
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with each name or structure component. Each entry in the inverted files for
design parameters will consist of a design parameter, the number (= address) of
each physical block which contains a logical record with that design parameter
value and a pointer to the address on that physical block of the set of position
numbers for logical records containing that particular design parameter value.
Each entry in the inverted file on a given design parameter is sorted in ascend-
ing order on the design parameter values. The inverted files will also be
stored on 512 word PRB's. It will be assumed for simplicity that the set of
entries for a given design parameter will always fit on a single physical record
block.

There will be a directory to each inverted file which is kept in executable
memory. The directory entries for a given inverted file will consist of the
largest and smallest value for a design parameter which is stored on a given
inverted file PRB together with the number (= address) of the PRB holding those
inverted file entries.

5. Physical record transmission: We will assume that the operating system
provides a convenient capability for transmitting fixed length blocks to and
from disk storage.
6. Query language: The query language consists of a knowledge of the table
structures.

A summary of the relationships between the storage mapping function and a
given physical record is illustrated in Figure 5.

This data management system structure will support queries for logical
records which specify one, two, or three design parameters. To find all records
which have a particular design parameter, say thickness = 0.002", the following
process would ensue:

" A search would be made on the directory for thickness to locate the
inverted file page ( PRB containing 0.002" for the thickness design
parameter. This PRB would be loaded into executable memory.

" A search of this page of the inverted file for thickness would return
the set of physical record blocks containing the logical records with
that thickness parameter and the pointer to the physical record block
section which holds the positions on the PRB of the logical records
containing the given design parameter.

" These physical records could then be read in from the disk. The logical
records would be extracted from the PRB's and examined one by one using
the hierarchical record addressing scheme.

To obtain all records which have two particular attributes, say a thickness
of 0.002" and a strut separation of 0.8; one would carry out an identical search
on the inverted files for both thickness and strut separation. The intersection
of the two lists of physical record blocks will contain all of the logical
records which have the specified value for both parameters.

A simple system such as the one described can be implemented with only a
modest amount of effort in FORTRAN under a modern operating system. There are,
of course, many other data representations and mapping functions which could
be used.
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Level L 1 2 2 3 3 2 3 3

Name N WS SD DH DD PC ED TD PR

Count C 40 20 10 6 5 10 6 2

Q 0 0 20 0 6 130 0 6

M 210 1 11 1 1 8 1 1

Table 1: Tabular Representation of
Record Structure
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1 Wing Section [40] 1 WS [40]

2 Surface Description [20] 2 SD [20]

2 Design History [10] 2 SD [20]

3 Design Data [6]. 3 DD [6]

3 Plant Code [5] 3 PC [5]

2 Evaluation Data [10] 2 ED [10]

3 Test Data [6] 3 TD [6]

3 Performance Rating[2] 3 PR [2]

Figure 1: Record Definition for Wing Section Data

WS

Figure 2: Tree Diagram of Wing Section Data Record
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1 Wing Section [15]

2 Aircraft Designation CIO

2 Design Parameters

3 Thickness Rl

3 Flexibility R1

2 Stress Values R [25]

Figure 3: Logical Record Definition for Wing
Section Stress Data

WING
SECTION

SEPAR=AETERS

THICKNESS FLEXIBILITY

Figure 4: Tree Structure of Wing Section Logical Record
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Directory for Inverted File Physical Record

Thickness for Thickness Block 10

0.002 RI

R2

0.002 R3

0.004 Block 10

Block 19

-4 0.004

Figure 5: File Structures For Wing Section Data
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TOOLS FOR COMPUTER GRAPHICS APPLICATIONS

R.L. Phillips
The University of Michigan

ABSTRACT

Ten years of extensive research in computer graphics has produced a
collection of basic algorithms and procedures whose utility spans many disci-
plines; they can be regarded as tools. These tools are described in terms of
their fundamental aspects, implementations, applications, and availability.
Programs which are discussed include basic data plotting, curve smoothing,
and depiction of 3-dimensional surfaces. As an aid to potential users of
these tools, particular attention is given to discussing their availability
and, where applicable, their cost.

INTRODUCTION

Direct computer-produced graphical output, once considered a luxury, is
becoming relatively commonplace. The availability of low cost plotters and
display terminals is largely responsible for the trend. Increased usage of
computer graphics has given rise to a need for application-oriented, non-
research, graphical software. It is the goal of this paper to pointout
and discuss such software. The hope is that duplication of effort can be
avoided and that the use of non-general, low quality graphic software will
be discouraged.

The software to be described here is of such generality, widespread util-
ity and ready availability so as to be classified as a tool--a tool to be
employed to the user's advantage and not encumber him in his work. The paper,
then, is a survey of sorts, but a rather limited one. We shall not discuss any
software in the research stages, nor any software that is not readily available.
Moreover, since device and system independence are also valued attributes,
vendor supplied packages, no matter how good, will not be discussed. In what
follows we shall discuss basic data presentation techniques, both for two and
three dimensions. Then certain data processing and enhancement methods will be
described (e.g. clipping and shadino.

DATA PRESENTATION (2-Dimensional)

Overview

One of the most useful applications of computer graphics is data presenta-
tion, or graphing of data on an axis system. The two-dimensional graph is the
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most common qualitative and quantitative method of representing relations among
data. Several software tools have been developed to facilitate the data presen-
tation process, ranging from automatic axis scale determination to passing
smooth curves through the data points.

Automatic Scale Generation

If we impose the reasonable restriction that the scale to be determined is
"nice" or readable, the process of automatic scale selection is not at all
trivial. A scale obtained by dividing the span of a variable by the corres-
ponding axis length will almost never satisfy this restriction. "Nice" scale
intervals will never have values like 0.125 or 1.1 but rather will be more
usable values like 0.1 or 2.0. Even where a "nice" interval of, say 5, is
used, corresponding axis labels like -1, 4, 9, etc., would not qualify as a
readable scale. Tastes may differ on readability but there are some funda-
mental good practices that should be followed in scale selection.

Several algorithms have been published for automatic production of readable
scales. They all produce acceptable results and we shall describe only one in
some detail, the algorithm due to Lewart (ref. 1). The rules are simple -the
scale intervals must be the product of an integer power of ten and one of a set
of "nice" coefficients. Certainly this set should consist of at least 1, 2,
and 5 but individual taste may allow perhaps 4 and 8 to be included. The next
requirement is that axis labels must be integer multiples of the scale inter-
vals. These requirements result in an axis whose extremes will embrace the
data it represents. When the algorithm is applied to each axis)the resulting
graph is "efficient"--the data come as close as possible to filling the avail-
able plotting area. Figure 1 shows the results of applying this algorithm to a
situation where a data zoom is performed on the original graph. The algorithm,
being general, can adapt to any situation. Comparable algorithms are described
in references 2 and 3.

Labelling with Software Characters

A common goal in the preparation of computer-produced data representations
is to make them report-ready, i.e. no subsequent draftsman work should be
required. If this goal is to be attained all text that appears on the graph
should be of high quality. The usual stick figure software characters usually
will not suffice for this; something more elegant is desired. The nonpareil of
all software character fonts are those developed by Hershey (ref. 4). Complete
font digitizations as well as several sophisticated typographic subroutines are
available for the cost of mailing a tape. A sample of textual output using
Hershey's fonts is shown in figure 2; nothing more need be said.

Curve Fitting

We shall make a distinction now between curve fitting, where one attempts
to pass a smooth curve through all data points, and curve smoothing, where a
smooth curve is passed through a neighborhood of all points according to some
least-squares criterion. The latter process is useful where the data is
statistical or imprecisely known; this will be discussed in the next section.
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In a case where data are precisely known and no smoothing is required, one
often wishes to join the data points with a continuous curve. The process is
trivial, of course, if many intermediate data points can be calculated so that
joining them by a straight line produces a sufficiently smooth curve. This is
often not feasiblehowever. It may be that the data are derived from an expen-
sive computation, as in the solution of a set of nonlinear partial differential
equations, or the original computational scheme is not available, such as data
obtained from a table of thermophysical properties.

Without benefit of prior experielice, one is tempted to try to produce a
smooth curve by using either a global high order polynomial fit to all data
points or to produce intermediate points by second or higher order interpola-
tion. Neither approach is ever very successful; unwanted oscillations usually
result. An excellent overview of these problems is found in Akima's paper
(ref. 5) where he proposes a new scheme for curve fitting. His contribution
was to devise a new way of locally computing slopes at each data point and
using these slopes to construct a series of cubic polynomials, continuous at
each join. The program that implements this algorithm appears in reference 6.
The author has not been able to find a situation where Akima's method fails.
It is inexpensive as well as accurate. Figure 3 demonstrates its capabilities.

In some instances Akima's method produces a curve of greater curvature
than may be desired, especially where the original data is sparse. In this
case one should consider the tension splines of Cline (ref. 7). Cline develops
a rigorous theory for these curves but pragmatically we can imagine them to be
flexible wires which are passed through a series of eyelets (the data points)
and made as taut as one wishes by pulling on either end. The amount of tension
is under control of the user, which is at the same time an advantage and draw-
back of the approach. It is not clear a priori what value of tension is
appropriate. Figure 4 shows Cline's method using different amounts of tension
on the same set of data.

Curve Smoothing

For data that is imprecisely known or statistical in nature) a curve-fitting
approach as described above would be inappropriate. Rather, we wish to obtain
some smooth, mean curve that passes through the neighborhood of the data
according to some least-squares criterion. Often, the curve obtained is to be
used for further computation such as differentiation or interpolation so it is
important to perform the smoothing accurately. Variations that are statis-
tically significant must be accounted for; thus, the method must be capable of
recognizing trends. There are, by the way, many nonlinear regression techniques
that have been developed in the statistical literature (refs. 8 and 9) that
treat this problem, but to use them one must usually make some assumptions about
the functional form of the data. The method of smoothing splines, however,
requires no such assumptions and it is this technique we discuss. Here a
series of spline curves are computed which join continuously at knots. Knots
may or may not coincide with data points; the number of them and their position
are selected by the program so as to produce a best fit, subject to a least-
squares constraint. The user can supply weighting factors to the original data
so that outliers can be eliminated from the smoothing process.
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Two smoothing spline algorithms have been published in the literature. The
method of Powell (ref. 10) requires somewhat more user judgment than one would
like but seems to produce good results. Lyche and Schumaker (ref. 11) have des-
cribed a method that is based upon local procedures, but it is published in
Algol and involves a recursive procedure. Thus, the program cannot be easily
transliterated into FORTRAN. Results typical of Powell's algorithms are shown
in figure 5. Details on a third smoothing spline algorithm have not been pub-
lished but the routine that implements it is available from Kahaner (ref. 12).
This routine is noteworthy because it allows the user to apply certain boundary
conditions to the resulting smooth curve. The other algorithms do not allow
this, a fact which may sometimes prove objectionable.

DATA PRESENTATION (3-Dimensional)

Overview

Often one wishes to display bivariate data in the form of a surface, a pro-
jection of the three-dimensional representation of the data. While this repre-
sentation is seldom of any quantitative use)it can provide valuable insight into
the behavior of complex datasets. Such a representation is shown in figure 6
where the transfer function of an underwater sound signal is represented (ref.
13). The steps required to obtain a plot such as this can be difficult, depend-
ing upon the original form of the data. All possibilities will be discussed
below.

Interpolation on a Regular Grid

We are imagining a dataset, functional or tabular, Z(X,Y), where Z is some
altitude or third dimension associated with every coordinate pair X,Y. If the
data happen to have been derived on a regular lattice, that is, Z is known at all
points on a specified X-Y array, intermediate points can be obtained fairly
easily. It is not even necessary that the lattice spacing be the same in the X
and Y directions; it simply must be regular. The production of intermediate
points with the aim of plotting a smooth surface can be approached as a simple
bivariate interpolation problem. Unless the function Z(X,Y) is very benign,
however, straightforward interpolation schemes produce unreal values in the
vicinity of strong local variations. The most successful and generally appli-
cable algorithm for regular grid interpolation is due to Akima (ref. 14). The
method is, in fact, the bivariate analog of the successful univariate scheme
described in reference 6. The program has a simple interpolation entry point
for deriving values from a bivariate table, and a smooth surface mode, where a
dense array of interpolated points are returned for subsequent plotting. The
author has used these routines in many situations, always with good results.

Interpolation from Scattered Observations

A more realistic case than that of the above, is where the dataset consists
of a table of Z values known only at irregular and arbitrarily spaced X-Y
coordinates. Most spatially distributed geographic data is in this category,
as is experimentally derived bivariate data. The process of interpolating from
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scattered observations to produce a regular grid is much more challenging than
the corresponding problem for regular data; over 100 papers have been published
on the subject over the last 20 years. The problem stems from choosing an
interpolation function that will not bias the data thus derived. Two interest-
ing and successful solutions to this problem have recently appeared. One is
due to Akima (ref. 15), who we have referenced twice already. He again extends
his "local procedure" scheme. to handle the case of irregularly spaced initial
data. The results are in excellent agreement with test data presented in his
paper.

Tobler (ref. 16) has recently produced another approach to this problem,
which amounts to an iterative solution of the biharmonic equation in the
vicinity of each data point. His program produces results equal to those of
Akima, using the same data.

Surface Plotting

Once the dataset has been regularized, one can proceed to produce a plot
of the surface it describes. Any method that is to be acceptable for our
purposes must satisfy three criteria:

a) user-specified perspective projections of the surface must be
obtainable,

b) hidden lines, e.g. the back of the surface must be eliminated,

c) one should be able to display the surface as viewed from any orienta-
tion, including from below.

There are dozens of surface plotting packages but only a few satisfy all
these criteria. One that does is due to Williamson (ref. 17). It is acceptable
in all three of the above respects but it might be criticized for its lack of
generality. It is very much plotter oriented, expressing size variables in
terms of inches rather than abstract user units. Another system which is
acceptable in all respects was developed by Wright (ref. 18) and forms part of
the impressive NCAR graphics package (ref. 19). Wright's program has many
options for representing a surface, including' cross-hatching and the production
of stereo pairs. Figure 7 is an example of a surface produced by Wright's
program.

DATA PROCESSING AND ENHANCEMENT

Shading and Cross-Hatching

It is often the case that one wishes to automatically shade or cross-hatch
a general two-dimensional polygon. This capability is frequently required for
architectural applications, engineering drawings, and thematic cartography.
The task is, given an n-sided simply connected polygon with no restrictions on
concavity or convexity, find the intersection of a family of shading lines with
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the boundary of the polygon. The lines are then drawn with the proper angle
and spacing. For cross-hatching this process is repeated for a different
orientation, and perhaps spacing. A general shading routine should also permit
variable spacing between shading lines so that arbitrary and unusual patterns
can be obtained. Finally, it is desirable to be able to shade a multiply con-
nected region by specifying invisible, coincident cut points that join inner
and outer boundaries of a polygon.

All of these desirable properties are displayed in figure 8, which was pro-
duced by an algorithm originally suggested by Dwyer (ref. 20) and implemented
by Phillips (ref. 21). The algorithm uses vector algebra for the computation
of shading line intersections, an operation that is simulated in reference 21
by the complex arithmetic features of FORTRAN. A more elaborate example of
shading is shown in figure 9, a thematic map showing the location of water
polluting industries in New England. Another shading program has been developed
by Ison (ref. 22) which is capable of complex patterns such as bricks, soil
patterns, etc. This package, however, seems unnecessarily oriented toward the
digital plotter as an output device.

Windowing and Shielding

The process of methodically preventing some part of a graphical display
from being plotted is known as clipping. This is often done when the user nar-
rows his field of view in his coordinate space, e.g. zooming in for more detail,
and the part of the picture falling outside that area is not to be seen. The
boundaries of the narrowed field of view is called a viewport and can generally
be formed by any polygon. Usually, however, the viewport is simply a rectangle,
making the process of clipping straightforward (refs. 23 and 24). The most
general case involves any simply connected polygon, concave or convex. More-
over, the term window implies that the portion of a picture inside the viewport
is to be seen, while the viewport acts as a shield if the picture outside it is
to be visible. Behler and Zajac (ref. 25) have published an algorithm for
treating this general case. The problem differs from the one of general shad-
ing in that it does not deal with a family of lines having common characteris-
tics; here every line is a special case. An example of polygonal windowing is
shown in figure 10. There the polygon is the lower peninsula of Michigan con-
sisting of 370 points, which windows contour lines that have been computed on
a rectangular grid that is much larger than the polygon.

SUMMARY

A reader may find fault with this limited survey for having omitted several
of his favorite graphics routines; this is inevitable. I have endeavored to
discuss all packages of which I am aware (one could do no more) and with the
important stipulations that the software is of proven utility, it can easily be
installed on most machines, it is available (from the sources referenced), and
the cost, if any, is nominal. Naturally, the author welcomes any revelations
of other software that satisfies these constraints.
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Figure 7.- Three-dimensional representation
of a mathematical function.
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COMPUTER SYSTEMS: WHAT THE FUTURE HOLDS*

Harold S. Stone
University of Massachusetts

ABSTRACT

Continuing advances in device -technology will result in substantially
higher speed devices at rapidly diminishing costs. These changes will in turn
have a significant impact on computer architecture in the next decade, and on
the wide-scale proliferation of computer systems into new applications.

The microprocessor of today will eventually evolve to a processor with
the power of a minicomputer or perhaps a medium-scale computer of today. Non-
mechanical auxiliary memories are likely to be available as well. The compu-
tational power and low cost of these computer systems will see them used in
the home, office and industry for a wide variety of new applications.

Medium-scale systems will tend to be total systems that are service ori-
ented rather than hardware oriented. A major service will be that of the in-
formation utility to provide data to a widely distributed pool of on-site com-
puters.

Large-scale computer systems have the potential to achieve two to three
orders of magnitude speed improvement over the next decade. A large portion
of this may come from the faster devices. Another significant portion will
come from higher parallelism. For large numerical computations, the vector
processor of today may evolve to a hybrid vector processor-multiprocessor to
provide efficient operation on both scalar and vector types of computations.

I. INTRODUCTION

The past two decades have seen truly phenomenal advances in computers, but
the potential of computers has barely been realized. The advances in computer
technology anticipated in the next decade will be so widespread that computers
will directly affect the living habits and quality of life of almost every
person in the United States.

Since computer architecture is largely driven by device technology and
software interfaces, Section II of this paper is devoted to an analysis of the
devices that may be available in the 1980s, and to the smaller end of the com-
puter scale. Here's where growth in the next decade will be most rapid. Medi-
um-scale computers are treated in Section III, where we project that medium-
scale computers will tend to be better oriented to the specific needs of the

*This paper is an abbreviated version of the article that appears in
Computer Science and Scientific Computing, Academic Press, New York, 1976,
edited by J. M. Ortega.
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user than their predecessors of today. Finally, for large-scale computers,
Section IV indicates that rather few new ideas in high-speed computer architec-
ture are likely to appear in the next decade, but there is room to attain about
two to three orders of magnitude increase in speed by perfecting present ideas.

II. ADVANCES IN DEVICE TECHNOLOGIES--THE COMPUTER ON A CHIP

Semiconductor and integrated circuit technologies have consistently
achieved advances in density, speed, and power consumption over the history
of solid state devices. Figure 1 illustrates some of these trends [Turn2 ].
Densities double roughly every two years at the present rate. Assuming that
this continues and the 16K bit chip is a standard in 1976, then the megabit
memory chip may appear late in the 1980s. To obtain densities leading to
megabit chips, it will be necessary to achieve new breakthroughs in the reso-
lution of the etching process by moving from visible light to electron-beam
scanning techniques or beyond.

Apart from achieving greater resolution, there are other gains to be
made from new processes. In the past decade, processes based on MOS (metal-
oxide semiconductor) techniques have been characterized by high density, low
power consumption, but low speed. The competing technology is bipolar, with
high speed, but roughly one fourth the density and additional complexity in
its fabrication. TTL (transistor-transistor logic) has been the favored type
of bipolar technology for implementation of reasonably fast logic, and ECL
(emitter-coupled logic) is another bipolar technology that attains the fastest
logic speed. Unfortunately, the power consumption of ECL is very high, and
its density is low, thereby leaving the designer no clearly best choice for
a logic family.

Recent changes in technology seem to have pointed bipolar and MOS pro-
cesses in the same direction. MOS circuits diffused onto a sapphire substrate
instead of the traditional silicon substrate attain notably higher speeds than
standard MOS circuits, but this technology has not yet overcome some obstacles
that have impaired its development. In the bipolar technology, a new off-
shoot known as 12L (integrated-injection logic) greatly simplifies the masks
for active gates, thus increasing circuit density while retaining speed. 12L
logic has a speed more nearly that of ECL rather than that of the slower T2L
logic. If either 12 L or silicon-on-sapphire technologies succeed in attaining
their respective goals, then one may have high speed, high density, and low
cost all in one family.

Projecting these developments into architecture has a very interesting
impact on the innovation known as the microprocessor. A microprocessor is
essentially a complete processor compact enough to be constructed on a single
chip. Actually, one often finds several chips used to make up a full-fledged
computer with one chip consisting of the arithmetic logic and processor regis-
ters, another chip holding control memory, and yet another chip used for
random-access memory. Input/output interfaces may be on yet other chips.
As density of fabrication increases, the chip boundaries will grow larger
and the number of different chips will be reduced.
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We have three data points on the power of microprocessors. The 4-bit
microprocessor was introduced in quantity in 1971, the 8-bit in 1974 and the
16-bit is being shipped in quantity in 1976. This is consistent with the
claim that density increases by a factor of two about every two years. The
chips themselves are increasing in size, too. Again projecting this forward
by several years, we find that the complexity of the arithmetic unit of a
microprocessor may attain that of sophisticated medium-scale machines of
today by the 1980s. Figure 2 illustrates a speculation on where the trend
may lead.

Although microprocessors will have the power of today's minicomputers,
or more, in the 1980s, there is a major obstacle that must be crossed before
microprocessor based systems can lead to substantial cost reductions in con-
ventional minicomputer systems. The problem is mechanical auxiliary memory.

Fortunately, there are several possible nonmechanical replacements for
auxiliary memory in various stages of development. Magnetic bubble memories
are nonvolatile magnetic shift-register memories in which storage densities
comparable to MOS memories have been achieved. Random-access time may be as
low as 20 microseconds, more likely somewhat higher, but still some 100 times
faster than access to rotating mechanical devices.

Another attractive storage medium is also shift-register oriented, and
known as charge-coupled device (CCD) technology. CCD memories are volatile
shift registers made up of capacitors. Charge in capacitors must be kept in
circulation, unlike bubbles in magnetic bubble memories, but otherwise CCD
performance characteristics closely approximate magnetic bubble memory charac-
teristics. The first CCD memory chips for computers announced commercially
appeared in 1975 and had 16k bits per chip. This puts CCD technology slightly
ahead of magnetic bubbles, since bubbles had not reached the market place by
1975.

One other technology today is a candidate for replacing mechanical auxil-
iary memory, namely electron-beam addressable memory (EBAM). This technology
uses electron-beam techniques to deposit charges in a small region of a sur-
face, and to read them out at a later time. EBAM is several years behind
the development of CCD and bubble memories, but, once perfected~could be a
strong contender since access to memory is by random-beam addressing rather
than by serial access to shift registers.

III. MEDIUM-SCALE COMPUTERS

Computer manufacturers have to face the 1980s with a mixture of joy and
grief. The joy stems from potential unit sales of 100 to 1000 times the pre-
sent number of systems sold as computers move into every imaginable applica-
tion. The grief is due to the decreasing cost of the hardware itself so that
total sales volume of the hardware may drop precipitously even while unit
sales are growing enormously. All the while this is happening, the end-user
finds that a paltry sum buys him hardware of incredible potential, but to make
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it do his job he has to pour many thousands of dollars into software and
program development.

So how will these trends affect medium-scale machines? Medium-scale
computers will be designed to use inexpensive additional logic wherever pos-
sible to facilitate flexibility, and enhance the range of services that can
be done effectively on the machine.

Among the several trends for medium-scale computers that are percept-
able are the following:

1. A "rich" instruction set is included that permits many higher level
operations to be done efficiently.

2. The use of microprogramming with a writeable control store will be
prevalent, so that new instructions can be implemented by the user
after physical delivery of the machine. New instructions might be
included for each compiler target language to increase efficiency
of execution of object code, and emulation of one architecture by
another will be commonplace.

3. Large memories, both real and virtual, will simplify problems of
writing programs of large size.

4. Executive and control functions will be done by special purpose
hardware insofar as is possible to simplify the operating system
and control program.

5. Virtual machine architecture will be widely used to aid the writing
and debugging of the control software that cannot be implemented in
hardware.

Projecting present trends forward to the late 1980s, we see that a device
comparable in cost and size to the electric typewriter could be as powerful
as a medium-scale computer of 1976. This will have a great effect on decen-
tralizing the computer center as we know it today. What will be the function
of shared-resource medium-scale computers then?

In the 1980s there will still be need for central computers for computer
users to access. Access will be less for computational power than for informa-
tion from central data files. The data will be a resource and a commodity of
trade by that time if it is not already now. The user will almost certainly
use the central data base for numerical data, catalogs, bibliographies, mail,
and text, quite apart from uses he makes of programs stored centrally. Since
information is created in real time, a computer user must tap that information
through access to one or more centralized data bases even when he is able to
satisfy his computational needs for that data through the purchase of inexpen-
sive hardware.
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IV, LARGE-SCALE SYSTEMS

By early 1976 a number of very high-speed computing systems had been
installed and were in operation. Some of the systems use a standard serial
instruction set, and use a number of clever design techniques to achieve high
speed. For example, the CDC 7600 system uses multiple functional units that
can operate simultaneously, and uses an intricate instruction scheduling
mechanism to keep these units busy a5 much as possible, even executing the
instructions out-of order if that results in a net increase in speed.

One trend that has emerged in recent years is that of using a computer with
a vector instruction set. Each vector instruction in such a machine operates
on entire vectors instead of single elements. When a vector instruction is
issued on a vector computer, that one instruction manipulates all of the
elements of the vector operands, and achieves a great deal of parallelism of
operation with a large gain in speed.

Two distinct types of computers with vector instructions have been deliv-
ered. One type is the array computer of the ILLIAC IV class in which each
element of the vector is treated by an independent processor. Figure 3 shows
a control unit linked to 64 processors in an array by a broadcast bus. Each
instruction issued results in 64 responses, each on a different element of a
vector of length 64. The other type, the pipeline computer, as exemplified
by the CDC STAR, has the computational unit partitioned into successive stages,
each of which can be busy simultaneously. A vector operation is initiated by
placing the first operand pair into the first stage of the computation; as
they pass on to the second stagethe next pair is passed into the empty first
stage. Thus if there are N stages in the pipeline, N different operations may
be in operation simultaneously, each in a different stage. Figure 4 illus-
trates the structure of a typical pipeline computer. Floating-point operations
can be conveniently divided into about eight successive stages, and the pipe-
lines themselves can be replicated to give additional parallelism.

To give some idea of the parallelism achievable on the present machines,
ILLIAC IV has 64 processors, but each processor can do two single precision
operations simultaneously, so that 128 different computations can be executed
at once. The CDC STAR has an effective parallelism of about 32. The parallel-
ism achievable is impressive, but is representative of designs in progress
well over five years ago. The ILLIAC IV uses an integrated circuit memory,
but no large-scale integration. The CDC STAR uses neither integrated circuit
memory nor large-scale integration. It is obvious that technological changes
available today can be included in the next generation of these computers to
gain a potential speed improvement of approximately another factor of 10 at
no increase in cost. If we take into account the advances that are certain
to appear in the next five years in integrated circuit technology, then this
could contribute a total factor of 50 improvement in speed over machines in
operation today.

Unfortunately, a factor of 50 is not enough for the very large-scale
problems for which these computer systems are built. Most notable of the
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massive calculations are fluid dynamics problems and weather analysis. We will
still be a factor of 105 too slow to solve these problems in their full detail.

The obvious answer to attain higher speed is to increase the degree of
parallelism where possible. When logic costs drop very low, the number of
identical units that can be put into a design of marketable cost, can increase
from 102 in 1976 to perhaps 103 or 104 in the late 1980s. Unfortunately, the
speed increases attainable fall short of being equal to the replication factor.

A number of lessons have been learned from experience with vector comput-
ers like STAR and ILLIAC. A few of the principal ones are given below:

1. When algorithms can be cast in vector form there are significant
advantages due to elimination of unnecessary overhead for individual
elements.

2. It is possible to incur substantial overhead in vector algorithms in
communicating information among elements of a vector when operations
on one element are influenced by the value of another element.

3. There are numerous tricks for casting serial algorithms into vector
form. A programmer may have to experiment with various alternatives
to obtain the best alternative. The best vector algorithms for parti-
cular problems may be quite unconventional and, in fact, may not be
very efficient when performed in equivalent serial form.

4. Major bottlenecks occur when sequential scalar operations have to be
done in between vector operations. This reduces the effective speed
of a highly parallel machine drastically and the effect becomes more
pronounced in machines as the parallelism increases.

By all appearances the vector machine is not the final answer, although
the range of problems for which vector machines are well-suited has proved to
be much larger than anticipated because of innovations in parallel algorithm
and architectural features.

T. C. Chen (ref. 1) among others observed the performance deficiences from inter-
mixing parallel and serial processes. Figure 5 illustrates a typical duty
cycle for an array processor in which one processor is kept busy initializing
a vector process, then all N processors are ganged together performing the
vector operation. Chen observed that a pipeline computer duty cycle figure
has the form of staircase in figure 6, to show how each successive state ini-
tiates activity slightly later than its predecessor stage. The shaded region
in dark boundaries is exactly equal to the unshaded region in dark boundaries,
so that the shaded area of the pipeline computer duty cycle is exactly equal
to the shaded area of an array processor computation as shown in the previous
figure. With this observation it is clear that there is a potential perform-
ance decrease in a pipeline computer due to a phenomenon very much like the
serial overhead prior to a vector computation in an array computer.
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The ILLIAC IV is designed to perform the computation shown in figure 5
as shown in figure 7, where the serial computation is done in a single control
unit, and is done while the previous vector operation is in progress in the
arithmetic processor array. This vastly reduces time lost due to interspers-
ing serial and parallel operations. The equivalent processing duty cycle for
the pipeline computer is shown in figure 8, which simply shows one vector
operation initiated before the termination of the prior one. The CDC STAR
pipeline computer presently does not have the facility to execute in this
manner. Thus, the STAR duty cycle is more like that shown in figure 9.

To achieve better total performance than is predicted by Chen's pessi-
mistic analysis, it is clear that the architecture of the 1980s will have a
mix of processors, some of which are dedicated to serial types of tasks, and
some dedicated to highly parallel or iterative types of tasks. Execution
overlap among processing units will have to be significant to attain the
speed potential of having many arithmetic units.

With microprocessors so inexpensive, there is an obvious motivation to
construct vector or multiprocessor computers from arrays of microprocessors.
While the individual speed of any one microprocessor may be moderate, the
ability to gather 103 or 104 processors together in a single computer can
lead to a very high-speed computer with tremendous computing power for reason-
able cost. Hardware advances have unfortunately, outstripped architectural
and algorithmic advances, to the extent that it is now possible to construct
arrays with incredible computational power, except that it is not clear what
form the arrays should take and how calculations should proceed in them.

To summarize the current trends for high-speed machines, a factor of 50-
speed improvement is possible by the end of the 1980s from technological ad-
vances in devices, but the demands of very large problems will stimulate evo-
lution of the architecture itself. Vector machines look more promising than
multiprocessors for large-scale problems for the long-term future, but some mix
of the two may emerge and prove to be the best solution.(See ref. 2.)

V. CONCLUSIONS

With technological advances leading the way as we move into and through
the next decade, computer architecture will evolve to enhance the prolifera-
tion of the microprocessor, the utility of the medium-scale computer, and the
sheer computational power of the large-scale machine. The most dramatic
changes will be in new applications brought about because of ever lowering
costs, smaller sizes, and faster switching times. There is no evidence at this
time that the rate of advance in computer technology will slow significantly
in the 1980s. We are truly undergoing a Computer Revolution of the scale of
the Industrial Revolution.
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